Loading…

Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system

In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established,...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2024-02, Vol.43 (1), Article 36
Main Authors: Rahioui, Mohamed, El Kinani, El Hassan, Ouhadan, Abdelaziz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33
cites cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 43
creator Rahioui, Mohamed
El Kinani, El Hassan
Ouhadan, Abdelaziz
description In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.
doi_str_mv 10.1007/s40314-023-02556-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaW2DYwtpM4XkLFS1RiA2trkkxKqjyKnRSVFXfghpyElCCxYzGaxf-Y0cfYqYBzAaAvfAhKhAFINUwUxUGyxyYiAR2AArnPJlKqJFAxqEN25P0KQGkRhhO2WZTE_bauqXMl-Rkvmw26EpuO-z71a8yID9pLm884NjnP2saT22BXtg2v8M3zonUceVfWxAuH2U7Aii-pIYdV-U45v3Itua-Pzwfs18Mt31F9zA4KrDyd_O4pe765fprfBYvH2_v55SLIlDBdEEktQGuJJgQJlJi8CENRmCTOpaREGsplkaIBAaRTioQBjGKNWR4ncVooNWVnY-_ata89-c6u2t4ND3orjVQmAi3E4JKjK3Ot944Ku3ZljW5rBdgdXzvytQNf-8PXJkNIjSE_mJslub_qf1LfDRx_zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950711</pqid></control><display><type>article</type><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><source>Springer Nature</source><creator>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creator><creatorcontrib>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creatorcontrib><description>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02556-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Conservation laws ; Exact solutions ; Invariants ; Lie groups ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Power series ; Subspace methods</subject><ispartof>Computational &amp; applied mathematics, 2024-02, Vol.43 (1), Article 36</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</citedby><cites>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</cites><orcidid>0000-0002-0619-0867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conservation laws</subject><subject>Exact solutions</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Subspace methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaW2DYwtpM4XkLFS1RiA2trkkxKqjyKnRSVFXfghpyElCCxYzGaxf-Y0cfYqYBzAaAvfAhKhAFINUwUxUGyxyYiAR2AArnPJlKqJFAxqEN25P0KQGkRhhO2WZTE_bauqXMl-Rkvmw26EpuO-z71a8yID9pLm884NjnP2saT22BXtg2v8M3zonUceVfWxAuH2U7Aii-pIYdV-U45v3Itua-Pzwfs18Mt31F9zA4KrDyd_O4pe765fprfBYvH2_v55SLIlDBdEEktQGuJJgQJlJi8CENRmCTOpaREGsplkaIBAaRTioQBjGKNWR4ncVooNWVnY-_ata89-c6u2t4ND3orjVQmAi3E4JKjK3Ot944Ku3ZljW5rBdgdXzvytQNf-8PXJkNIjSE_mJslub_qf1LfDRx_zA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Rahioui, Mohamed</creator><creator>El Kinani, El Hassan</creator><creator>Ouhadan, Abdelaziz</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid></search><sort><creationdate>20240201</creationdate><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><author>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conservation laws</topic><topic>Exact solutions</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahioui, Mohamed</au><au>El Kinani, El Hassan</au><au>Ouhadan, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><artnum>36</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02556-8</doi><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2024-02, Vol.43 (1), Article 36
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2923950711
source Springer Nature
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Conservation laws
Exact solutions
Invariants
Lie groups
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Power series
Subspace methods
title Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20symmetries,%20invariant%20subspace%20method,%20and%20conservation%20laws%20for%20a%20time%20fractional%20generalized%20Broer%E2%80%93Kaup%20system&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Rahioui,%20Mohamed&rft.date=2024-02-01&rft.volume=43&rft.issue=1&rft.artnum=36&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02556-8&rft_dat=%3Cproquest_cross%3E2923950711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923950711&rft_id=info:pmid/&rfr_iscdi=true