Loading…
Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system
In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established,...
Saved in:
Published in: | Computational & applied mathematics 2024-02, Vol.43 (1), Article 36 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 43 |
creator | Rahioui, Mohamed El Kinani, El Hassan Ouhadan, Abdelaziz |
description | In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries. |
doi_str_mv | 10.1007/s40314-023-02556-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaW2DYwtpM4XkLFS1RiA2trkkxKqjyKnRSVFXfghpyElCCxYzGaxf-Y0cfYqYBzAaAvfAhKhAFINUwUxUGyxyYiAR2AArnPJlKqJFAxqEN25P0KQGkRhhO2WZTE_bauqXMl-Rkvmw26EpuO-z71a8yID9pLm884NjnP2saT22BXtg2v8M3zonUceVfWxAuH2U7Aii-pIYdV-U45v3Itua-Pzwfs18Mt31F9zA4KrDyd_O4pe765fprfBYvH2_v55SLIlDBdEEktQGuJJgQJlJi8CENRmCTOpaREGsplkaIBAaRTioQBjGKNWR4ncVooNWVnY-_ata89-c6u2t4ND3orjVQmAi3E4JKjK3Ot944Ku3ZljW5rBdgdXzvytQNf-8PXJkNIjSE_mJslub_qf1LfDRx_zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950711</pqid></control><display><type>article</type><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><source>Springer Nature</source><creator>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creator><creatorcontrib>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creatorcontrib><description>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02556-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Conservation laws ; Exact solutions ; Invariants ; Lie groups ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Power series ; Subspace methods</subject><ispartof>Computational & applied mathematics, 2024-02, Vol.43 (1), Article 36</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</citedby><cites>FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</cites><orcidid>0000-0002-0619-0867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conservation laws</subject><subject>Exact solutions</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Subspace methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaW2DYwtpM4XkLFS1RiA2trkkxKqjyKnRSVFXfghpyElCCxYzGaxf-Y0cfYqYBzAaAvfAhKhAFINUwUxUGyxyYiAR2AArnPJlKqJFAxqEN25P0KQGkRhhO2WZTE_bauqXMl-Rkvmw26EpuO-z71a8yID9pLm884NjnP2saT22BXtg2v8M3zonUceVfWxAuH2U7Aii-pIYdV-U45v3Itua-Pzwfs18Mt31F9zA4KrDyd_O4pe765fprfBYvH2_v55SLIlDBdEEktQGuJJgQJlJi8CENRmCTOpaREGsplkaIBAaRTioQBjGKNWR4ncVooNWVnY-_ata89-c6u2t4ND3orjVQmAi3E4JKjK3Ot944Ku3ZljW5rBdgdXzvytQNf-8PXJkNIjSE_mJslub_qf1LfDRx_zA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Rahioui, Mohamed</creator><creator>El Kinani, El Hassan</creator><creator>Ouhadan, Abdelaziz</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid></search><sort><creationdate>20240201</creationdate><title>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</title><author>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conservation laws</topic><topic>Exact solutions</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahioui, Mohamed</au><au>El Kinani, El Hassan</au><au>Ouhadan, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><artnum>36</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we investigate the Lie group formalism for the time fractional generalized nonlinear Broer–Kaup system in the sense of Riemann–Liouville fractional partial derivative. The Lie algebra corresponding to the symmetry groups in which the studied equation remains invariant is established, and the similarity reductions are performed. Next, based on the invariant subspace method as well as the power series method, including the convergence analysis, some exact solutions of the time fractional generalized Broer–Kaup system and its standard form are derived. Moreover, in order to show the dynamical behavior and the impact of the fractional order on the profile of solutions, some figures in 2D and 3D have been depicted. Finally, in accordance with the nonlinear self-adjointness property, conservation laws are successfully formulated using infinitesimal symmetries.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02556-8</doi><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2024-02, Vol.43 (1), Article 36 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2923950711 |
source | Springer Nature |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Conservation laws Exact solutions Invariants Lie groups Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Power series Subspace methods |
title | Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20symmetries,%20invariant%20subspace%20method,%20and%20conservation%20laws%20for%20a%20time%20fractional%20generalized%20Broer%E2%80%93Kaup%20system&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Rahioui,%20Mohamed&rft.date=2024-02-01&rft.volume=43&rft.issue=1&rft.artnum=36&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02556-8&rft_dat=%3Cproquest_cross%3E2923950711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-52710772a94020e89df441f986d22e829ed2fba9010e7be5190a567acd686bf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923950711&rft_id=info:pmid/&rfr_iscdi=true |