Loading…

A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images

Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2024-03, Vol.36 (7), p.3513-3524
Main Authors: Ramasamy, Manjula Devi, Periasamy, Keerthika, Periasamy, Suresh, Muthusamy, Suresh, Ramamoorthi, Ponarun, Thangavel, Gunasekaran, Sekaran, Sreejith, Sadasivuni, Kishor Kumar, Geetha, Mithra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3
cites cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3
container_end_page 3524
container_issue 7
container_start_page 3513
container_title Neural computing & applications
container_volume 36
creator Ramasamy, Manjula Devi
Periasamy, Keerthika
Periasamy, Suresh
Muthusamy, Suresh
Ramamoorthi, Ponarun
Thangavel, Gunasekaran
Sekaran, Sreejith
Sadasivuni, Kishor Kumar
Geetha, Mithra
description Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.
doi_str_mv 10.1007/s00521-023-09324-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924060584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924060584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</originalsourceid><addsrcrecordid>eNp9UU1vFDEMjRBILIU_wCkSFzhM8eRjdua4VLBUWsEFzpE3cbYp08mQZFq1_4Z_SsogceNiW_Z79pMfY69bOG8Btu8zgBZtA0I2MEihmocnbNMqKRsJun_KNjCoOu6UfM5e5HwNAKrr9Yb92vEp3tLIdw7nEm6Jf6El4VhTuYvpR_MBMzl-wHlEG3Di0fM9Ljk_1m930yHu33E7Ym34YLGEOHEcTzGFcnXDfUzcUSFbwnTiLuCRSrA81TjFGcvVPb-rQG7jGJe09uttv0xuyTzc4InyS_bM45jp1d98xr5_-vjt4nNz-Lq_vNgdGivboTReS9IdiKMfeiKtdS9b23noBIAk4bTDfnB9q6zTooOjHI4at7RV2nrqLcoz9mbdO6f4c6FczHXVVOVkIwahoKuPVBUlVpRNMedE3syp6kz3pgXzaIVZrTDVCvPHCvNQSXIl5QqeTpT-rf4P6zd7h4-l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924060584</pqid></control><display><type>article</type><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><source>Springer Nature</source><creator>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</creator><creatorcontrib>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</creatorcontrib><description>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-09324-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Diabetes ; Diabetic retinopathy ; Edge detection ; Eye diseases ; Image Processing and Computer Vision ; Machine learning ; Medical imaging ; Neural networks ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2024-03, Vol.36 (7), p.3513-3524</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</citedby><cites>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</cites><orcidid>0000-0002-9420-6389 ; 0000-0002-9319-8874 ; 0000-0001-7309-3138 ; 0000-0002-8653-7268 ; 0000-0002-2008-6388 ; 0000-0002-9156-2054 ; 0000-0003-2730-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramasamy, Manjula Devi</creatorcontrib><creatorcontrib>Periasamy, Keerthika</creatorcontrib><creatorcontrib>Periasamy, Suresh</creatorcontrib><creatorcontrib>Muthusamy, Suresh</creatorcontrib><creatorcontrib>Ramamoorthi, Ponarun</creatorcontrib><creatorcontrib>Thangavel, Gunasekaran</creatorcontrib><creatorcontrib>Sekaran, Sreejith</creatorcontrib><creatorcontrib>Sadasivuni, Kishor Kumar</creatorcontrib><creatorcontrib>Geetha, Mithra</creatorcontrib><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Edge detection</subject><subject>Eye diseases</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1vFDEMjRBILIU_wCkSFzhM8eRjdua4VLBUWsEFzpE3cbYp08mQZFq1_4Z_SsogceNiW_Z79pMfY69bOG8Btu8zgBZtA0I2MEihmocnbNMqKRsJun_KNjCoOu6UfM5e5HwNAKrr9Yb92vEp3tLIdw7nEm6Jf6El4VhTuYvpR_MBMzl-wHlEG3Di0fM9Ljk_1m930yHu33E7Ym34YLGEOHEcTzGFcnXDfUzcUSFbwnTiLuCRSrA81TjFGcvVPb-rQG7jGJe09uttv0xuyTzc4InyS_bM45jp1d98xr5_-vjt4nNz-Lq_vNgdGivboTReS9IdiKMfeiKtdS9b23noBIAk4bTDfnB9q6zTooOjHI4at7RV2nrqLcoz9mbdO6f4c6FczHXVVOVkIwahoKuPVBUlVpRNMedE3syp6kz3pgXzaIVZrTDVCvPHCvNQSXIl5QqeTpT-rf4P6zd7h4-l</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ramasamy, Manjula Devi</creator><creator>Periasamy, Keerthika</creator><creator>Periasamy, Suresh</creator><creator>Muthusamy, Suresh</creator><creator>Ramamoorthi, Ponarun</creator><creator>Thangavel, Gunasekaran</creator><creator>Sekaran, Sreejith</creator><creator>Sadasivuni, Kishor Kumar</creator><creator>Geetha, Mithra</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9420-6389</orcidid><orcidid>https://orcid.org/0000-0002-9319-8874</orcidid><orcidid>https://orcid.org/0000-0001-7309-3138</orcidid><orcidid>https://orcid.org/0000-0002-8653-7268</orcidid><orcidid>https://orcid.org/0000-0002-2008-6388</orcidid><orcidid>https://orcid.org/0000-0002-9156-2054</orcidid><orcidid>https://orcid.org/0000-0003-2730-6483</orcidid></search><sort><creationdate>20240301</creationdate><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><author>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Edge detection</topic><topic>Eye diseases</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasamy, Manjula Devi</creatorcontrib><creatorcontrib>Periasamy, Keerthika</creatorcontrib><creatorcontrib>Periasamy, Suresh</creatorcontrib><creatorcontrib>Muthusamy, Suresh</creatorcontrib><creatorcontrib>Ramamoorthi, Ponarun</creatorcontrib><creatorcontrib>Thangavel, Gunasekaran</creatorcontrib><creatorcontrib>Sekaran, Sreejith</creatorcontrib><creatorcontrib>Sadasivuni, Kishor Kumar</creatorcontrib><creatorcontrib>Geetha, Mithra</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramasamy, Manjula Devi</au><au>Periasamy, Keerthika</au><au>Periasamy, Suresh</au><au>Muthusamy, Suresh</au><au>Ramamoorthi, Ponarun</au><au>Thangavel, Gunasekaran</au><au>Sekaran, Sreejith</au><au>Sadasivuni, Kishor Kumar</au><au>Geetha, Mithra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>3513</spage><epage>3524</epage><pages>3513-3524</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-09324-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9420-6389</orcidid><orcidid>https://orcid.org/0000-0002-9319-8874</orcidid><orcidid>https://orcid.org/0000-0001-7309-3138</orcidid><orcidid>https://orcid.org/0000-0002-8653-7268</orcidid><orcidid>https://orcid.org/0000-0002-2008-6388</orcidid><orcidid>https://orcid.org/0000-0002-9156-2054</orcidid><orcidid>https://orcid.org/0000-0003-2730-6483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-03, Vol.36 (7), p.3513-3524
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2924060584
source Springer Nature
subjects Algorithms
Artificial Intelligence
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Diabetes
Diabetic retinopathy
Edge detection
Eye diseases
Image Processing and Computer Vision
Machine learning
Medical imaging
Neural networks
Original Article
Probability and Statistics in Computer Science
title A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Adaptive%20Neural%20Network-Based%20Laplacian%20of%20Gaussian%20(AnLoG)%20classification%20algorithm%20for%20detecting%20diabetic%20retinopathy%20with%20colour%20retinal%20fundus%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ramasamy,%20Manjula%20Devi&rft.date=2024-03-01&rft.volume=36&rft.issue=7&rft.spage=3513&rft.epage=3524&rft.pages=3513-3524&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-09324-z&rft_dat=%3Cproquest_cross%3E2924060584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924060584&rft_id=info:pmid/&rfr_iscdi=true