Loading…
A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images
Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is...
Saved in:
Published in: | Neural computing & applications 2024-03, Vol.36 (7), p.3513-3524 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3 |
container_end_page | 3524 |
container_issue | 7 |
container_start_page | 3513 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Ramasamy, Manjula Devi Periasamy, Keerthika Periasamy, Suresh Muthusamy, Suresh Ramamoorthi, Ponarun Thangavel, Gunasekaran Sekaran, Sreejith Sadasivuni, Kishor Kumar Geetha, Mithra |
description | Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach. |
doi_str_mv | 10.1007/s00521-023-09324-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924060584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924060584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</originalsourceid><addsrcrecordid>eNp9UU1vFDEMjRBILIU_wCkSFzhM8eRjdua4VLBUWsEFzpE3cbYp08mQZFq1_4Z_SsogceNiW_Z79pMfY69bOG8Btu8zgBZtA0I2MEihmocnbNMqKRsJun_KNjCoOu6UfM5e5HwNAKrr9Yb92vEp3tLIdw7nEm6Jf6El4VhTuYvpR_MBMzl-wHlEG3Di0fM9Ljk_1m930yHu33E7Ym34YLGEOHEcTzGFcnXDfUzcUSFbwnTiLuCRSrA81TjFGcvVPb-rQG7jGJe09uttv0xuyTzc4InyS_bM45jp1d98xr5_-vjt4nNz-Lq_vNgdGivboTReS9IdiKMfeiKtdS9b23noBIAk4bTDfnB9q6zTooOjHI4at7RV2nrqLcoz9mbdO6f4c6FczHXVVOVkIwahoKuPVBUlVpRNMedE3syp6kz3pgXzaIVZrTDVCvPHCvNQSXIl5QqeTpT-rf4P6zd7h4-l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924060584</pqid></control><display><type>article</type><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><source>Springer Nature</source><creator>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</creator><creatorcontrib>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</creatorcontrib><description>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-09324-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Diabetes ; Diabetic retinopathy ; Edge detection ; Eye diseases ; Image Processing and Computer Vision ; Machine learning ; Medical imaging ; Neural networks ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2024-03, Vol.36 (7), p.3513-3524</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</citedby><cites>FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</cites><orcidid>0000-0002-9420-6389 ; 0000-0002-9319-8874 ; 0000-0001-7309-3138 ; 0000-0002-8653-7268 ; 0000-0002-2008-6388 ; 0000-0002-9156-2054 ; 0000-0003-2730-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramasamy, Manjula Devi</creatorcontrib><creatorcontrib>Periasamy, Keerthika</creatorcontrib><creatorcontrib>Periasamy, Suresh</creatorcontrib><creatorcontrib>Muthusamy, Suresh</creatorcontrib><creatorcontrib>Ramamoorthi, Ponarun</creatorcontrib><creatorcontrib>Thangavel, Gunasekaran</creatorcontrib><creatorcontrib>Sekaran, Sreejith</creatorcontrib><creatorcontrib>Sadasivuni, Kishor Kumar</creatorcontrib><creatorcontrib>Geetha, Mithra</creatorcontrib><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Edge detection</subject><subject>Eye diseases</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1vFDEMjRBILIU_wCkSFzhM8eRjdua4VLBUWsEFzpE3cbYp08mQZFq1_4Z_SsogceNiW_Z79pMfY69bOG8Btu8zgBZtA0I2MEihmocnbNMqKRsJun_KNjCoOu6UfM5e5HwNAKrr9Yb92vEp3tLIdw7nEm6Jf6El4VhTuYvpR_MBMzl-wHlEG3Di0fM9Ljk_1m930yHu33E7Ym34YLGEOHEcTzGFcnXDfUzcUSFbwnTiLuCRSrA81TjFGcvVPb-rQG7jGJe09uttv0xuyTzc4InyS_bM45jp1d98xr5_-vjt4nNz-Lq_vNgdGivboTReS9IdiKMfeiKtdS9b23noBIAk4bTDfnB9q6zTooOjHI4at7RV2nrqLcoz9mbdO6f4c6FczHXVVOVkIwahoKuPVBUlVpRNMedE3syp6kz3pgXzaIVZrTDVCvPHCvNQSXIl5QqeTpT-rf4P6zd7h4-l</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ramasamy, Manjula Devi</creator><creator>Periasamy, Keerthika</creator><creator>Periasamy, Suresh</creator><creator>Muthusamy, Suresh</creator><creator>Ramamoorthi, Ponarun</creator><creator>Thangavel, Gunasekaran</creator><creator>Sekaran, Sreejith</creator><creator>Sadasivuni, Kishor Kumar</creator><creator>Geetha, Mithra</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9420-6389</orcidid><orcidid>https://orcid.org/0000-0002-9319-8874</orcidid><orcidid>https://orcid.org/0000-0001-7309-3138</orcidid><orcidid>https://orcid.org/0000-0002-8653-7268</orcidid><orcidid>https://orcid.org/0000-0002-2008-6388</orcidid><orcidid>https://orcid.org/0000-0002-9156-2054</orcidid><orcidid>https://orcid.org/0000-0003-2730-6483</orcidid></search><sort><creationdate>20240301</creationdate><title>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</title><author>Ramasamy, Manjula Devi ; Periasamy, Keerthika ; Periasamy, Suresh ; Muthusamy, Suresh ; Ramamoorthi, Ponarun ; Thangavel, Gunasekaran ; Sekaran, Sreejith ; Sadasivuni, Kishor Kumar ; Geetha, Mithra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Edge detection</topic><topic>Eye diseases</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasamy, Manjula Devi</creatorcontrib><creatorcontrib>Periasamy, Keerthika</creatorcontrib><creatorcontrib>Periasamy, Suresh</creatorcontrib><creatorcontrib>Muthusamy, Suresh</creatorcontrib><creatorcontrib>Ramamoorthi, Ponarun</creatorcontrib><creatorcontrib>Thangavel, Gunasekaran</creatorcontrib><creatorcontrib>Sekaran, Sreejith</creatorcontrib><creatorcontrib>Sadasivuni, Kishor Kumar</creatorcontrib><creatorcontrib>Geetha, Mithra</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramasamy, Manjula Devi</au><au>Periasamy, Keerthika</au><au>Periasamy, Suresh</au><au>Muthusamy, Suresh</au><au>Ramamoorthi, Ponarun</au><au>Thangavel, Gunasekaran</au><au>Sekaran, Sreejith</au><au>Sadasivuni, Kishor Kumar</au><au>Geetha, Mithra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>3513</spage><epage>3524</epage><pages>3513-3524</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Diabetic retinopathy (DR) is a human eye disease in which the eye’s retina is damaged in diabetics. Diabetic retinopathy can be diagnosed by manually interpreting retinal fundus images, even though that takes longer to diagnose. Among these, the most challenging task in diagnosing the DR disease is edge detection in retinal fundus images to identify the region of infection and its severity. This paper aims to use the adaptive neural network-based Laplacian of Gaussian (AnLoG) classification algorithm on features extracted from diverse retinal fundus images to improve DR disease diagnostic accuracy and reduce training time. Based on the retinal fundus image in the Messidor dataset, the consequence of the proposed AnLoG classification algorithm for detecting diabetic retinopathy is compared to traditional supervised BPN machine learning algorithms and other contemporary techniques. AnLoG has proved its supremacy in terms of accuracy (97.29%), recall (94.64%), precision (93.13%), and F-Score (93.80%). Simulation results show that the proposed technique performs well compared to the existing approach.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-09324-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9420-6389</orcidid><orcidid>https://orcid.org/0000-0002-9319-8874</orcidid><orcidid>https://orcid.org/0000-0001-7309-3138</orcidid><orcidid>https://orcid.org/0000-0002-8653-7268</orcidid><orcidid>https://orcid.org/0000-0002-2008-6388</orcidid><orcidid>https://orcid.org/0000-0002-9156-2054</orcidid><orcidid>https://orcid.org/0000-0003-2730-6483</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-03, Vol.36 (7), p.3513-3524 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2924060584 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Diabetes Diabetic retinopathy Edge detection Eye diseases Image Processing and Computer Vision Machine learning Medical imaging Neural networks Original Article Probability and Statistics in Computer Science |
title | A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Adaptive%20Neural%20Network-Based%20Laplacian%20of%20Gaussian%20(AnLoG)%20classification%20algorithm%20for%20detecting%20diabetic%20retinopathy%20with%20colour%20retinal%20fundus%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ramasamy,%20Manjula%20Devi&rft.date=2024-03-01&rft.volume=36&rft.issue=7&rft.spage=3513&rft.epage=3524&rft.pages=3513-3524&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-09324-z&rft_dat=%3Cproquest_cross%3E2924060584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f53e5602bf98ee555831c6f062003e2d5da89d814cd5260b39b5a7e745cfe8ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924060584&rft_id=info:pmid/&rfr_iscdi=true |