Loading…
On Néron–Severi lattices of Jacobian elliptic K3 surfaces
We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we comput...
Saved in:
Published in: | Manuscripta mathematica 2024-03, Vol.173 (3-4), p.847-866 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393 |
container_end_page | 866 |
container_issue | 3-4 |
container_start_page | 847 |
container_title | Manuscripta mathematica |
container_volume | 173 |
creator | Clingher, Adrian Malmendier, Andreas |
description | We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases. |
doi_str_mv | 10.1007/s00229-023-01486-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOI5ewFXAdTRJ5dEBNzL4HpyFug7pdFp6aLvHpEdw5x08hefwJp7EaAvuXBVUff9f8CG0z-gho1QfJUo5N4RyIJSJQhHYQBMmgBOmC7mJJvkuCVeMbaOdlJY0U6Bhgo4XHb75eI999_n6dhueQ2xw64ah8SHhvsZXzvdl4zoc2rZZ5TW-BpzWsXYZ2EVbtWtT2PudU3R_dno3uyDzxfnl7GROPNd0IE5L7qWCyggNWihaigq8UFqxEEqoqAbHaqeVASm0Al8FWanKqEJoacDAFB2MvavYP61DGuyyX8cuv7TccCmFAMkyxUfKxz6lGGq7is2jiy-WUfttyY6WbLZkfyxZyCEYQynD3UOIf9X_pL4AEHVpNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544351</pqid></control><display><type>article</type><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><source>Springer Nature</source><creator>Clingher, Adrian ; Malmendier, Andreas</creator><creatorcontrib>Clingher, Adrian ; Malmendier, Andreas</creatorcontrib><description>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-023-01486-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Automorphisms ; Calculus of Variations and Optimal Control; Optimization ; Classification ; Geometry ; Lattices ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.847-866</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</cites><orcidid>0000-0002-5900-7384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Clingher, Adrian</creatorcontrib><creatorcontrib>Malmendier, Andreas</creatorcontrib><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</description><subject>Algebraic Geometry</subject><subject>Automorphisms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOI5ewFXAdTRJ5dEBNzL4HpyFug7pdFp6aLvHpEdw5x08hefwJp7EaAvuXBVUff9f8CG0z-gho1QfJUo5N4RyIJSJQhHYQBMmgBOmC7mJJvkuCVeMbaOdlJY0U6Bhgo4XHb75eI999_n6dhueQ2xw64ah8SHhvsZXzvdl4zoc2rZZ5TW-BpzWsXYZ2EVbtWtT2PudU3R_dno3uyDzxfnl7GROPNd0IE5L7qWCyggNWihaigq8UFqxEEqoqAbHaqeVASm0Al8FWanKqEJoacDAFB2MvavYP61DGuyyX8cuv7TccCmFAMkyxUfKxz6lGGq7is2jiy-WUfttyY6WbLZkfyxZyCEYQynD3UOIf9X_pL4AEHVpNg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Clingher, Adrian</creator><creator>Malmendier, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5900-7384</orcidid></search><sort><creationdate>20240301</creationdate><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><author>Clingher, Adrian ; Malmendier, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Automorphisms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clingher, Adrian</creatorcontrib><creatorcontrib>Malmendier, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clingher, Adrian</au><au>Malmendier, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>173</volume><issue>3-4</issue><spage>847</spage><epage>866</epage><pages>847-866</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-023-01486-3</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5900-7384</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.847-866 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2925544351 |
source | Springer Nature |
subjects | Algebraic Geometry Automorphisms Calculus of Variations and Optimal Control Optimization Classification Geometry Lattices Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups |
title | On Néron–Severi lattices of Jacobian elliptic K3 surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20N%C3%A9ron%E2%80%93Severi%20lattices%20of%20Jacobian%20elliptic%20K3%20surfaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Clingher,%20Adrian&rft.date=2024-03-01&rft.volume=173&rft.issue=3-4&rft.spage=847&rft.epage=866&rft.pages=847-866&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-023-01486-3&rft_dat=%3Cproquest_cross%3E2925544351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925544351&rft_id=info:pmid/&rfr_iscdi=true |