Loading…

On Néron–Severi lattices of Jacobian elliptic K3 surfaces

We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we comput...

Full description

Saved in:
Bibliographic Details
Published in:Manuscripta mathematica 2024-03, Vol.173 (3-4), p.847-866
Main Authors: Clingher, Adrian, Malmendier, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393
container_end_page 866
container_issue 3-4
container_start_page 847
container_title Manuscripta mathematica
container_volume 173
creator Clingher, Adrian
Malmendier, Andreas
description We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.
doi_str_mv 10.1007/s00229-023-01486-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925544351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925544351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOI5ewFXAdTRJ5dEBNzL4HpyFug7pdFp6aLvHpEdw5x08hefwJp7EaAvuXBVUff9f8CG0z-gho1QfJUo5N4RyIJSJQhHYQBMmgBOmC7mJJvkuCVeMbaOdlJY0U6Bhgo4XHb75eI999_n6dhueQ2xw64ah8SHhvsZXzvdl4zoc2rZZ5TW-BpzWsXYZ2EVbtWtT2PudU3R_dno3uyDzxfnl7GROPNd0IE5L7qWCyggNWihaigq8UFqxEEqoqAbHaqeVASm0Al8FWanKqEJoacDAFB2MvavYP61DGuyyX8cuv7TccCmFAMkyxUfKxz6lGGq7is2jiy-WUfttyY6WbLZkfyxZyCEYQynD3UOIf9X_pL4AEHVpNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925544351</pqid></control><display><type>article</type><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><source>Springer Nature</source><creator>Clingher, Adrian ; Malmendier, Andreas</creator><creatorcontrib>Clingher, Adrian ; Malmendier, Andreas</creatorcontrib><description>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-023-01486-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Automorphisms ; Calculus of Variations and Optimal Control; Optimization ; Classification ; Geometry ; Lattices ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.847-866</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</cites><orcidid>0000-0002-5900-7384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Clingher, Adrian</creatorcontrib><creatorcontrib>Malmendier, Andreas</creatorcontrib><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</description><subject>Algebraic Geometry</subject><subject>Automorphisms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOI5ewFXAdTRJ5dEBNzL4HpyFug7pdFp6aLvHpEdw5x08hefwJp7EaAvuXBVUff9f8CG0z-gho1QfJUo5N4RyIJSJQhHYQBMmgBOmC7mJJvkuCVeMbaOdlJY0U6Bhgo4XHb75eI999_n6dhueQ2xw64ah8SHhvsZXzvdl4zoc2rZZ5TW-BpzWsXYZ2EVbtWtT2PudU3R_dno3uyDzxfnl7GROPNd0IE5L7qWCyggNWihaigq8UFqxEEqoqAbHaqeVASm0Al8FWanKqEJoacDAFB2MvavYP61DGuyyX8cuv7TccCmFAMkyxUfKxz6lGGq7is2jiy-WUfttyY6WbLZkfyxZyCEYQynD3UOIf9X_pL4AEHVpNg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Clingher, Adrian</creator><creator>Malmendier, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5900-7384</orcidid></search><sort><creationdate>20240301</creationdate><title>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</title><author>Clingher, Adrian ; Malmendier, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Automorphisms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clingher, Adrian</creatorcontrib><creatorcontrib>Malmendier, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clingher, Adrian</au><au>Malmendier, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Néron–Severi lattices of Jacobian elliptic K3 surfaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>173</volume><issue>3-4</issue><spage>847</spage><epage>866</epage><pages>847-866</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We classify all Jacobian elliptic fibrations on K3 surfaces with finite automorphism group. We also classify all Jacobian elliptic fibrations with finite Mordell–Weil group on K3 surfaces with infinite automorphism group and 2-elementary Néron–Severi lattice. As part of the classification, we compute the lattice theoretic multiplicities of all Jacobian elliptic fibrations in both cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-023-01486-3</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5900-7384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2024-03, Vol.173 (3-4), p.847-866
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2925544351
source Springer Nature
subjects Algebraic Geometry
Automorphisms
Calculus of Variations and Optimal Control
Optimization
Classification
Geometry
Lattices
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
title On Néron–Severi lattices of Jacobian elliptic K3 surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20N%C3%A9ron%E2%80%93Severi%20lattices%20of%20Jacobian%20elliptic%20K3%20surfaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Clingher,%20Adrian&rft.date=2024-03-01&rft.volume=173&rft.issue=3-4&rft.spage=847&rft.epage=866&rft.pages=847-866&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-023-01486-3&rft_dat=%3Cproquest_cross%3E2925544351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-a752c563d94737460b4d3c46761eeb3d073a1fa769354763cde5d6d9684759393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925544351&rft_id=info:pmid/&rfr_iscdi=true