Loading…
High quantum yields generated by a multi-band quantum dot photocell
We perform the quantum yields in a multi-band quantum dot (QD) photocell via doping an intermediate band (IB) between the conduction band (CB) and valence band (VB). Under two different sub-band gap layouts, the output power has a prominent enhancement than the single-band gap photocell and the achi...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We perform the quantum yields in a multi-band quantum dot (QD) photocell via doping an intermediate band (IB) between the conduction band (CB) and valence band (VB). Under two different sub-band gap layouts, the output power has a prominent enhancement than the single-band gap photocell and the achieved peak photo-to-charge efficiency reaches to 74.9% as compared to the limit efficiency of 63.2% via the IB approach in the theoretical solar cell prototype. The achieved quantum yields reveal the potential to improve efficiency by some effective theoretical approaches in the QD-IB photocell. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2402.06681 |