Loading…

Opinion models, data, and politics

We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model which is adapted by Lagra...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Gsänger, Matthias, Hösel, Volker, Mohamad-Klotzbach, Christoph, Müller, Johannes
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gsänger, Matthias
Hösel, Volker
Mohamad-Klotzbach, Christoph
Müller, Johannes
description We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model which is adapted by Lagrangian parameters. We also discuss weak and strong effects continuum limits for the models. We then fit four models (Curie-Weiss, strong and weak effects limit for the q-voter model, and the reinforcement model) to election data from United States, United Kingdom, France and Germany. We find that particularly the weak effects models are able to fit the data (Kolmogorov-Smirnov test), where the weak effects reinforcement model performs best (AIC). The resulting estimates are interpreted in the view of political sciences, and also the importance of this kind of model-based approaches to election data for the political sciences is discussed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2925760516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925760516</sourcerecordid><originalsourceid>FETCH-proquest_journals_29257605163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8i_IzMvMz1PIzU9JzSnWUUhJLEnUUUjMS1EoyM_JLMlMLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSyNTczMDU0MzY-JUAQAvxy1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925760516</pqid></control><display><type>article</type><title>Opinion models, data, and politics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gsänger, Matthias ; Hösel, Volker ; Mohamad-Klotzbach, Christoph ; Müller, Johannes</creator><creatorcontrib>Gsänger, Matthias ; Hösel, Volker ; Mohamad-Klotzbach, Christoph ; Müller, Johannes</creatorcontrib><description>We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model which is adapted by Lagrangian parameters. We also discuss weak and strong effects continuum limits for the models. We then fit four models (Curie-Weiss, strong and weak effects limit for the q-voter model, and the reinforcement model) to election data from United States, United Kingdom, France and Germany. We find that particularly the weak effects models are able to fit the data (Kolmogorov-Smirnov test), where the weak effects reinforcement model performs best (AIC). The resulting estimates are interpreted in the view of political sciences, and also the importance of this kind of model-based approaches to election data for the political sciences is discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boltzmann distribution ; Elections ; Kolmogorov-Smirnov test ; Voters</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2925760516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Gsänger, Matthias</creatorcontrib><creatorcontrib>Hösel, Volker</creatorcontrib><creatorcontrib>Mohamad-Klotzbach, Christoph</creatorcontrib><creatorcontrib>Müller, Johannes</creatorcontrib><title>Opinion models, data, and politics</title><title>arXiv.org</title><description>We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model which is adapted by Lagrangian parameters. We also discuss weak and strong effects continuum limits for the models. We then fit four models (Curie-Weiss, strong and weak effects limit for the q-voter model, and the reinforcement model) to election data from United States, United Kingdom, France and Germany. We find that particularly the weak effects models are able to fit the data (Kolmogorov-Smirnov test), where the weak effects reinforcement model performs best (AIC). The resulting estimates are interpreted in the view of political sciences, and also the importance of this kind of model-based approaches to election data for the political sciences is discussed.</description><subject>Boltzmann distribution</subject><subject>Elections</subject><subject>Kolmogorov-Smirnov test</subject><subject>Voters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8i_IzMvMz1PIzU9JzSnWUUhJLEnUUUjMS1EoyM_JLMlMLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSyNTczMDU0MzY-JUAQAvxy1p</recordid><startdate>20240210</startdate><enddate>20240210</enddate><creator>Gsänger, Matthias</creator><creator>Hösel, Volker</creator><creator>Mohamad-Klotzbach, Christoph</creator><creator>Müller, Johannes</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240210</creationdate><title>Opinion models, data, and politics</title><author>Gsänger, Matthias ; Hösel, Volker ; Mohamad-Klotzbach, Christoph ; Müller, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29257605163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boltzmann distribution</topic><topic>Elections</topic><topic>Kolmogorov-Smirnov test</topic><topic>Voters</topic><toplevel>online_resources</toplevel><creatorcontrib>Gsänger, Matthias</creatorcontrib><creatorcontrib>Hösel, Volker</creatorcontrib><creatorcontrib>Mohamad-Klotzbach, Christoph</creatorcontrib><creatorcontrib>Müller, Johannes</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gsänger, Matthias</au><au>Hösel, Volker</au><au>Mohamad-Klotzbach, Christoph</au><au>Müller, Johannes</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Opinion models, data, and politics</atitle><jtitle>arXiv.org</jtitle><date>2024-02-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model which is adapted by Lagrangian parameters. We also discuss weak and strong effects continuum limits for the models. We then fit four models (Curie-Weiss, strong and weak effects limit for the q-voter model, and the reinforcement model) to election data from United States, United Kingdom, France and Germany. We find that particularly the weak effects models are able to fit the data (Kolmogorov-Smirnov test), where the weak effects reinforcement model performs best (AIC). The resulting estimates are interpreted in the view of political sciences, and also the importance of this kind of model-based approaches to election data for the political sciences is discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2925760516
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boltzmann distribution
Elections
Kolmogorov-Smirnov test
Voters
title Opinion models, data, and politics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Opinion%20models,%20data,%20and%20politics&rft.jtitle=arXiv.org&rft.au=Gs%C3%A4nger,%20Matthias&rft.date=2024-02-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2925760516%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29257605163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925760516&rft_id=info:pmid/&rfr_iscdi=true