Loading…

Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles

Electricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on G...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2024-02, Vol.12 (5), p.n/a
Main Authors: Jang, Jun‐Hyeon, Lee, Ha Young, Ryu, Jae‐Hoon, Lee, Jeong‐Yeon, Kim, Sung‐Hyun, Hwang, Sun‐Lyeong, Ahn, Hyung Soo, Ha, Dong Han, Yi, Sam Nyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3265-4edf87e2c1ebbb7061e67771a29a0f02746a41e3e9cd3ce7c0d67a142d6b1eb73
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced optical materials
container_volume 12
creator Jang, Jun‐Hyeon
Lee, Ha Young
Ryu, Jae‐Hoon
Lee, Jeong‐Yeon
Kim, Sung‐Hyun
Hwang, Sun‐Lyeong
Ahn, Hyung Soo
Ha, Dong Han
Yi, Sam Nyung
description Electricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on GaAs(100) wafer. The electrical output of the device is improved by adsorbing Au nanoparticles (AuNPs) on the Ag layer with the surface of closely connected Ag nanoparticles (AgNPs). By controlling the size and concentration of the AuNPs, a maximum power density of 867.5 µW cm−2 is obtained under a solar simulator (AM 1.5G), which represents a 151.7% improvement over the case without AuNP adsorption. The results of Raman spectra, finite‐difference time‐domain (FDTD) simulations, and COMSOL Multiphysics demonstrate that the newly formed hotspots between AgNPs─AuNPs and AuNPs─AuNPs enhance the electric field of the incident light significantly and extend the region where the electric field is maximally amplified to 600–800 nm, resulting in increased solar radiation pressure on the PZT piezoelectric layer. Localized surface plasmons that can amplify the electric field intensity are generated at the interface between the grained Ag layer and Au nanoparticles (AuNPs). When sunlight is illuminated inside the crater, light pressure caused by the amplified intensity of the electric field is applied to PZT, a piezoelectric material, resulting in the generation of electrical energy.
doi_str_mv 10.1002/adom.202301795
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2925760591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925760591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3265-4edf87e2c1ebbb7061e67771a29a0f02746a41e3e9cd3ce7c0d67a142d6b1eb73</originalsourceid><addsrcrecordid>eNqFkT9PwzAQxSMEEhV0ZbbE3GI7f0zG0pa2UqEd2jlynEviKrGLnbTKp-Gr4qgI2JjunvR-d7p7nvdA8JhgTJ94pusxxdTHhMXhlTegJA5HBDNy_ae_9YbWHjDGTvhxwAbe5zzPpZCgRIdW9dHoE9SgGqRzNFdgig4tuTmBbaQq0AxOUgDa216sZVE2aGvA2tYA2pVGt0WJthW3tVZoqttj1ft4g5oS0Eo1YHLu8BdozgAKLQyXCjI0cbN4BwZx5USL3rnSR24aKSqw995NzisLw-965-1f57vpcrTeLFbTyXokfBqFowCy_JkBFQTSNGU4IhAxxginMcc5piyIeEDAh1hkvgAmcBYxTgKaRalDmH_nPV7muhd8tO7e5KBbo9zKhMY0ZBEOY-Jc44tLGG2tgTw5Gllz0yUEJ30OSZ9D8pODA-ILcJYVdP-4k8ls8_bLfgFwBY6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925760591</pqid></control><display><type>article</type><title>Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jang, Jun‐Hyeon ; Lee, Ha Young ; Ryu, Jae‐Hoon ; Lee, Jeong‐Yeon ; Kim, Sung‐Hyun ; Hwang, Sun‐Lyeong ; Ahn, Hyung Soo ; Ha, Dong Han ; Yi, Sam Nyung</creator><creatorcontrib>Jang, Jun‐Hyeon ; Lee, Ha Young ; Ryu, Jae‐Hoon ; Lee, Jeong‐Yeon ; Kim, Sung‐Hyun ; Hwang, Sun‐Lyeong ; Ahn, Hyung Soo ; Ha, Dong Han ; Yi, Sam Nyung</creatorcontrib><description>Electricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on GaAs(100) wafer. The electrical output of the device is improved by adsorbing Au nanoparticles (AuNPs) on the Ag layer with the surface of closely connected Ag nanoparticles (AgNPs). By controlling the size and concentration of the AuNPs, a maximum power density of 867.5 µW cm−2 is obtained under a solar simulator (AM 1.5G), which represents a 151.7% improvement over the case without AuNP adsorption. The results of Raman spectra, finite‐difference time‐domain (FDTD) simulations, and COMSOL Multiphysics demonstrate that the newly formed hotspots between AgNPs─AuNPs and AuNPs─AuNPs enhance the electric field of the incident light significantly and extend the region where the electric field is maximally amplified to 600–800 nm, resulting in increased solar radiation pressure on the PZT piezoelectric layer. Localized surface plasmons that can amplify the electric field intensity are generated at the interface between the grained Ag layer and Au nanoparticles (AuNPs). When sunlight is illuminated inside the crater, light pressure caused by the amplified intensity of the electric field is applied to PZT, a piezoelectric material, resulting in the generation of electrical energy.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202301795</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Au nanoparticles (AuNPs) ; Electric fields ; Electric generators ; Energy harvesting ; Finite difference time domain method ; Gold ; Incident light ; Lead zirconate titanates ; light pressure ; Maximum power density ; Nanoparticles ; piezoelectric effect ; Piezoelectricity ; plasmon coupling ; Radiation ; Radiation pressure ; Raman spectra ; Silver ; Solar radiation</subject><ispartof>Advanced optical materials, 2024-02, Vol.12 (5), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3265-4edf87e2c1ebbb7061e67771a29a0f02746a41e3e9cd3ce7c0d67a142d6b1eb73</cites><orcidid>0000-0001-9788-9448 ; 0000-0002-2625-7643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jang, Jun‐Hyeon</creatorcontrib><creatorcontrib>Lee, Ha Young</creatorcontrib><creatorcontrib>Ryu, Jae‐Hoon</creatorcontrib><creatorcontrib>Lee, Jeong‐Yeon</creatorcontrib><creatorcontrib>Kim, Sung‐Hyun</creatorcontrib><creatorcontrib>Hwang, Sun‐Lyeong</creatorcontrib><creatorcontrib>Ahn, Hyung Soo</creatorcontrib><creatorcontrib>Ha, Dong Han</creatorcontrib><creatorcontrib>Yi, Sam Nyung</creatorcontrib><title>Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles</title><title>Advanced optical materials</title><description>Electricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on GaAs(100) wafer. The electrical output of the device is improved by adsorbing Au nanoparticles (AuNPs) on the Ag layer with the surface of closely connected Ag nanoparticles (AgNPs). By controlling the size and concentration of the AuNPs, a maximum power density of 867.5 µW cm−2 is obtained under a solar simulator (AM 1.5G), which represents a 151.7% improvement over the case without AuNP adsorption. The results of Raman spectra, finite‐difference time‐domain (FDTD) simulations, and COMSOL Multiphysics demonstrate that the newly formed hotspots between AgNPs─AuNPs and AuNPs─AuNPs enhance the electric field of the incident light significantly and extend the region where the electric field is maximally amplified to 600–800 nm, resulting in increased solar radiation pressure on the PZT piezoelectric layer. Localized surface plasmons that can amplify the electric field intensity are generated at the interface between the grained Ag layer and Au nanoparticles (AuNPs). When sunlight is illuminated inside the crater, light pressure caused by the amplified intensity of the electric field is applied to PZT, a piezoelectric material, resulting in the generation of electrical energy.</description><subject>Au nanoparticles (AuNPs)</subject><subject>Electric fields</subject><subject>Electric generators</subject><subject>Energy harvesting</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Incident light</subject><subject>Lead zirconate titanates</subject><subject>light pressure</subject><subject>Maximum power density</subject><subject>Nanoparticles</subject><subject>piezoelectric effect</subject><subject>Piezoelectricity</subject><subject>plasmon coupling</subject><subject>Radiation</subject><subject>Radiation pressure</subject><subject>Raman spectra</subject><subject>Silver</subject><subject>Solar radiation</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9PwzAQxSMEEhV0ZbbE3GI7f0zG0pa2UqEd2jlynEviKrGLnbTKp-Gr4qgI2JjunvR-d7p7nvdA8JhgTJ94pusxxdTHhMXhlTegJA5HBDNy_ae_9YbWHjDGTvhxwAbe5zzPpZCgRIdW9dHoE9SgGqRzNFdgig4tuTmBbaQq0AxOUgDa216sZVE2aGvA2tYA2pVGt0WJthW3tVZoqttj1ft4g5oS0Eo1YHLu8BdozgAKLQyXCjI0cbN4BwZx5USL3rnSR24aKSqw995NzisLw-965-1f57vpcrTeLFbTyXokfBqFowCy_JkBFQTSNGU4IhAxxginMcc5piyIeEDAh1hkvgAmcBYxTgKaRalDmH_nPV7muhd8tO7e5KBbo9zKhMY0ZBEOY-Jc44tLGG2tgTw5Gllz0yUEJ30OSZ9D8pODA-ILcJYVdP-4k8ls8_bLfgFwBY6U</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jang, Jun‐Hyeon</creator><creator>Lee, Ha Young</creator><creator>Ryu, Jae‐Hoon</creator><creator>Lee, Jeong‐Yeon</creator><creator>Kim, Sung‐Hyun</creator><creator>Hwang, Sun‐Lyeong</creator><creator>Ahn, Hyung Soo</creator><creator>Ha, Dong Han</creator><creator>Yi, Sam Nyung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9788-9448</orcidid><orcidid>https://orcid.org/0000-0002-2625-7643</orcidid></search><sort><creationdate>20240201</creationdate><title>Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles</title><author>Jang, Jun‐Hyeon ; Lee, Ha Young ; Ryu, Jae‐Hoon ; Lee, Jeong‐Yeon ; Kim, Sung‐Hyun ; Hwang, Sun‐Lyeong ; Ahn, Hyung Soo ; Ha, Dong Han ; Yi, Sam Nyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3265-4edf87e2c1ebbb7061e67771a29a0f02746a41e3e9cd3ce7c0d67a142d6b1eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Au nanoparticles (AuNPs)</topic><topic>Electric fields</topic><topic>Electric generators</topic><topic>Energy harvesting</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Incident light</topic><topic>Lead zirconate titanates</topic><topic>light pressure</topic><topic>Maximum power density</topic><topic>Nanoparticles</topic><topic>piezoelectric effect</topic><topic>Piezoelectricity</topic><topic>plasmon coupling</topic><topic>Radiation</topic><topic>Radiation pressure</topic><topic>Raman spectra</topic><topic>Silver</topic><topic>Solar radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jun‐Hyeon</creatorcontrib><creatorcontrib>Lee, Ha Young</creatorcontrib><creatorcontrib>Ryu, Jae‐Hoon</creatorcontrib><creatorcontrib>Lee, Jeong‐Yeon</creatorcontrib><creatorcontrib>Kim, Sung‐Hyun</creatorcontrib><creatorcontrib>Hwang, Sun‐Lyeong</creatorcontrib><creatorcontrib>Ahn, Hyung Soo</creatorcontrib><creatorcontrib>Ha, Dong Han</creatorcontrib><creatorcontrib>Yi, Sam Nyung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jun‐Hyeon</au><au>Lee, Ha Young</au><au>Ryu, Jae‐Hoon</au><au>Lee, Jeong‐Yeon</au><au>Kim, Sung‐Hyun</au><au>Hwang, Sun‐Lyeong</au><au>Ahn, Hyung Soo</au><au>Ha, Dong Han</au><au>Yi, Sam Nyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles</atitle><jtitle>Advanced optical materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>5</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Electricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on GaAs(100) wafer. The electrical output of the device is improved by adsorbing Au nanoparticles (AuNPs) on the Ag layer with the surface of closely connected Ag nanoparticles (AgNPs). By controlling the size and concentration of the AuNPs, a maximum power density of 867.5 µW cm−2 is obtained under a solar simulator (AM 1.5G), which represents a 151.7% improvement over the case without AuNP adsorption. The results of Raman spectra, finite‐difference time‐domain (FDTD) simulations, and COMSOL Multiphysics demonstrate that the newly formed hotspots between AgNPs─AuNPs and AuNPs─AuNPs enhance the electric field of the incident light significantly and extend the region where the electric field is maximally amplified to 600–800 nm, resulting in increased solar radiation pressure on the PZT piezoelectric layer. Localized surface plasmons that can amplify the electric field intensity are generated at the interface between the grained Ag layer and Au nanoparticles (AuNPs). When sunlight is illuminated inside the crater, light pressure caused by the amplified intensity of the electric field is applied to PZT, a piezoelectric material, resulting in the generation of electrical energy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202301795</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9788-9448</orcidid><orcidid>https://orcid.org/0000-0002-2625-7643</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-02, Vol.12 (5), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2925760591
source Wiley-Blackwell Read & Publish Collection
subjects Au nanoparticles (AuNPs)
Electric fields
Electric generators
Energy harvesting
Finite difference time domain method
Gold
Incident light
Lead zirconate titanates
light pressure
Maximum power density
Nanoparticles
piezoelectric effect
Piezoelectricity
plasmon coupling
Radiation
Radiation pressure
Raman spectra
Silver
Solar radiation
title Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Improvement%20of%20Energy%20Harvesting%20Device%20Using%20Light%20Pressure%20Through%20Plasmon%20Coupling%20at%20the%20Interface%20Between%20Grained%20Ag%20Layer%20and%20Au%20Nanoparticles&rft.jtitle=Advanced%20optical%20materials&rft.au=Jang,%20Jun%E2%80%90Hyeon&rft.date=2024-02-01&rft.volume=12&rft.issue=5&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202301795&rft_dat=%3Cproquest_cross%3E2925760591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3265-4edf87e2c1ebbb7061e67771a29a0f02746a41e3e9cd3ce7c0d67a142d6b1eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925760591&rft_id=info:pmid/&rfr_iscdi=true