Loading…

Probabilistic model for cracking localization in reinforced fibrous concrete beams

This paper proposes a probabilistic model that explains the phenomenon of cracking localization (CL) in RC beams with addition of steel fibers. Quantification of the CL is defined as the ratio between the total number of cracks and the number of significantly wide cracks. The model considers both th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mathematics 2024-02, Vol.144 (1), Article 23
Main Authors: Karinski, Yuri S., Dancygier, Avraham N., Gebreyesus, Yosef Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a probabilistic model that explains the phenomenon of cracking localization (CL) in RC beams with addition of steel fibers. Quantification of the CL is defined as the ratio between the total number of cracks and the number of significantly wide cracks. The model considers both the fibers and conventional reinforcement ratios, as well as the steel stress hardening and the location of the rebars in the cross-section. The fiber distribution in the concrete mix is considered random while the conventional reinforcement—as deterministic. A cumulative function of the total steel distribution, and a binomial probability function are proposed for a newly defined variable that represents the distribution of the fibers effectiveness along the beam. The model was validated with available data from flexural experiments showing good agreement of the model’s prediction with the reported results. The model shows that the cracking localization level in beams is more pronounced in beams with low reinforcement ratios and relatively large fibers content and enables its quantification.
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-023-10330-2