Loading…

Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes

A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many mode...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Hopfmueller, Florian, Tremblay, Maxime, St-Jean, Philippe, Royer, Baptiste, Marc-Antoine Lemonde
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hopfmueller, Florian
Tremblay, Maxime
St-Jean, Philippe
Royer, Baptiste
Marc-Antoine Lemonde
description A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.
doi_str_mv 10.48550/arxiv.2402.09333
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2926949656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926949656</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-gLuAS0mc-8WdhlrFggWzL38nMzA1ndHMpPj4BnTxcTaH8yF0Q3DDtRD4HsafcG4ox7TBhjF2gRaUMVJrTukVWuV8xBhTqagQbIG6p5RTDLbawTSEu4dq7X2wwcVSfYTTNEAJKVbJV22KFoqL8_pqk0px-QSxfgsF3LnejS5_hmGYtd7la3TpYchu9c8l6p7XXftSb983r-3jtgYjWC2sMEwqxSQRoNQBc2I0Bm2B4F45Zxz23sKhB60tVdgSoiSjXHrHiTCaLdHtX_ZrTN-Ty2V_TNMY58c9NVQabqSQ7BcVbFE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926949656</pqid></control><display><type>article</type><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><source>Publicly Available Content (ProQuest)</source><creator>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</creator><creatorcontrib>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</creatorcontrib><description>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.09333</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Concatenated codes ; Error correction ; Fault tolerance ; Hilbert space ; Qubits (quantum computing) ; Simulation</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2926949656?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Hopfmueller, Florian</creatorcontrib><creatorcontrib>Tremblay, Maxime</creatorcontrib><creatorcontrib>St-Jean, Philippe</creatorcontrib><creatorcontrib>Royer, Baptiste</creatorcontrib><creatorcontrib>Marc-Antoine Lemonde</creatorcontrib><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><title>arXiv.org</title><description>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</description><subject>Codes</subject><subject>Concatenated codes</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Hilbert space</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-gLuAS0mc-8WdhlrFggWzL38nMzA1ndHMpPj4BnTxcTaH8yF0Q3DDtRD4HsafcG4ox7TBhjF2gRaUMVJrTukVWuV8xBhTqagQbIG6p5RTDLbawTSEu4dq7X2wwcVSfYTTNEAJKVbJV22KFoqL8_pqk0px-QSxfgsF3LnejS5_hmGYtd7la3TpYchu9c8l6p7XXftSb983r-3jtgYjWC2sMEwqxSQRoNQBc2I0Bm2B4F45Zxz23sKhB60tVdgSoiSjXHrHiTCaLdHtX_ZrTN-Ty2V_TNMY58c9NVQabqSQ7BcVbFE4</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Hopfmueller, Florian</creator><creator>Tremblay, Maxime</creator><creator>St-Jean, Philippe</creator><creator>Royer, Baptiste</creator><creator>Marc-Antoine Lemonde</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241120</creationdate><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><author>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Concatenated codes</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Hilbert space</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hopfmueller, Florian</creatorcontrib><creatorcontrib>Tremblay, Maxime</creatorcontrib><creatorcontrib>St-Jean, Philippe</creatorcontrib><creatorcontrib>Royer, Baptiste</creatorcontrib><creatorcontrib>Marc-Antoine Lemonde</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopfmueller, Florian</au><au>Tremblay, Maxime</au><au>St-Jean, Philippe</au><au>Royer, Baptiste</au><au>Marc-Antoine Lemonde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</atitle><jtitle>arXiv.org</jtitle><date>2024-11-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.09333</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2926949656
source Publicly Available Content (ProQuest)
subjects Codes
Concatenated codes
Error correction
Fault tolerance
Hilbert space
Qubits (quantum computing)
Simulation
title Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bosonic%20Pauli+:%20Efficient%20Simulation%20of%20Concatenated%20Gottesman-Kitaev-Preskill%20Codes&rft.jtitle=arXiv.org&rft.au=Hopfmueller,%20Florian&rft.date=2024-11-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.09333&rft_dat=%3Cproquest%3E2926949656%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926949656&rft_id=info:pmid/&rfr_iscdi=true