Loading…
Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes
A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many mode...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hopfmueller, Florian Tremblay, Maxime St-Jean, Philippe Royer, Baptiste Marc-Antoine Lemonde |
description | A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes. |
doi_str_mv | 10.48550/arxiv.2402.09333 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2926949656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926949656</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-gLuAS0mc-8WdhlrFggWzL38nMzA1ndHMpPj4BnTxcTaH8yF0Q3DDtRD4HsafcG4ox7TBhjF2gRaUMVJrTukVWuV8xBhTqagQbIG6p5RTDLbawTSEu4dq7X2wwcVSfYTTNEAJKVbJV22KFoqL8_pqk0px-QSxfgsF3LnejS5_hmGYtd7la3TpYchu9c8l6p7XXftSb983r-3jtgYjWC2sMEwqxSQRoNQBc2I0Bm2B4F45Zxz23sKhB60tVdgSoiSjXHrHiTCaLdHtX_ZrTN-Ty2V_TNMY58c9NVQabqSQ7BcVbFE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926949656</pqid></control><display><type>article</type><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><source>Publicly Available Content (ProQuest)</source><creator>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</creator><creatorcontrib>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</creatorcontrib><description>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.09333</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Concatenated codes ; Error correction ; Fault tolerance ; Hilbert space ; Qubits (quantum computing) ; Simulation</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2926949656?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Hopfmueller, Florian</creatorcontrib><creatorcontrib>Tremblay, Maxime</creatorcontrib><creatorcontrib>St-Jean, Philippe</creatorcontrib><creatorcontrib>Royer, Baptiste</creatorcontrib><creatorcontrib>Marc-Antoine Lemonde</creatorcontrib><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><title>arXiv.org</title><description>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</description><subject>Codes</subject><subject>Concatenated codes</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Hilbert space</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-gLuAS0mc-8WdhlrFggWzL38nMzA1ndHMpPj4BnTxcTaH8yF0Q3DDtRD4HsafcG4ox7TBhjF2gRaUMVJrTukVWuV8xBhTqagQbIG6p5RTDLbawTSEu4dq7X2wwcVSfYTTNEAJKVbJV22KFoqL8_pqk0px-QSxfgsF3LnejS5_hmGYtd7la3TpYchu9c8l6p7XXftSb983r-3jtgYjWC2sMEwqxSQRoNQBc2I0Bm2B4F45Zxz23sKhB60tVdgSoiSjXHrHiTCaLdHtX_ZrTN-Ty2V_TNMY58c9NVQabqSQ7BcVbFE4</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Hopfmueller, Florian</creator><creator>Tremblay, Maxime</creator><creator>St-Jean, Philippe</creator><creator>Royer, Baptiste</creator><creator>Marc-Antoine Lemonde</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241120</creationdate><title>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</title><author>Hopfmueller, Florian ; Tremblay, Maxime ; St-Jean, Philippe ; Royer, Baptiste ; Marc-Antoine Lemonde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Concatenated codes</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Hilbert space</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hopfmueller, Florian</creatorcontrib><creatorcontrib>Tremblay, Maxime</creatorcontrib><creatorcontrib>St-Jean, Philippe</creatorcontrib><creatorcontrib>Royer, Baptiste</creatorcontrib><creatorcontrib>Marc-Antoine Lemonde</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopfmueller, Florian</au><au>Tremblay, Maxime</au><au>St-Jean, Philippe</au><au>Royer, Baptiste</au><au>Marc-Antoine Lemonde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes</atitle><jtitle>arXiv.org</jtitle><date>2024-11-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A promising route towards fault-tolerant quantum error correction is the concatenation of a Gottesman-Kitaev-Preskill (GKP) code with a qubit code. Development of such concatenated codes requires simulation tools which realistically model noise, while being able to simulate the dynamics of many modes. However, so far, large-scale simulation tools for concatenated GKP codes have been limited to idealized noise models and GKP code implementations. Here, we introduce the Bosonic Pauli+ model (BP+), which can be simulated efficiently for a large number of modes, while capturing the rich dynamics in the bosonic multi-mode Hilbert space. We demonstrate the method by simulating a hybrid surface code, where the data qubits are finite-energy GKP qubits stabilized using the small-Big-small (sBs) protocol, and the syndrome qubits are standard two-level systems. Using BP+, we present logical error rates of such an implementation. Confidence in the accuracy of the method is gained by comparing its predictions with full time evolution simulations for several relevant quantum circuits. While developed specifically for GKP qubits stabilized using the sBs protocol, the mathematical structure of BP+ is generic and may be applicable also to the simulation of concatenations using other bosonic codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.09333</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2926949656 |
source | Publicly Available Content (ProQuest) |
subjects | Codes Concatenated codes Error correction Fault tolerance Hilbert space Qubits (quantum computing) Simulation |
title | Bosonic Pauli+: Efficient Simulation of Concatenated Gottesman-Kitaev-Preskill Codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bosonic%20Pauli+:%20Efficient%20Simulation%20of%20Concatenated%20Gottesman-Kitaev-Preskill%20Codes&rft.jtitle=arXiv.org&rft.au=Hopfmueller,%20Florian&rft.date=2024-11-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.09333&rft_dat=%3Cproquest%3E2926949656%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-5c5936773615a77b041980a8ca10d7ee9e0ffcabda88c270c11763246fe415983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926949656&rft_id=info:pmid/&rfr_iscdi=true |