Loading…

Looking inside: Analysis of keto‐enol equilibrium using agent‐based models

The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical organic chemistry 2024-03, Vol.37 (3)
Main Authors: Bowers, Gregory A., Baldasare, Corey A., Seybold, Paul G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3
container_end_page
container_issue 3
container_start_page
container_title Journal of physical organic chemistry
container_volume 37
creator Bowers, Gregory A.
Baldasare, Corey A.
Seybold, Paul G.
description The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.
doi_str_mv 10.1002/poc.4592
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927044284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927044284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqUg8QiWWFhS7N92ErNVFTepgqW7ZTt25TaNWzsZuvEIPCNPQqoyneFcdPQhdE_JjBICT_toZ1xIuEATSqQsKJPiEk1ILXnBgJFrdJPzhpDRE9UEfS5j3IZujUOXQ-Oe8bzT7TGHjKPHW9fH3-8f18UWu8MQ2mBSGHZ4yKeGXruuH22js2vwLjauzbfoyus2u7t_naLV68tq8V4sv94-FvNlYUGQvhDaE2YaAJDclrS0pHbCs0paZ7jhTQnaWELBVdZqDsLXFqQwIEvgrPFsih7Os_sUD4PLvdrEIY3PswIJFeEcaj6mHs8pm2LOyXm1T2Gn01FRok6w1AhLnWCxP5xlXr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927044284</pqid></control><display><type>article</type><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</creator><creatorcontrib>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</creatorcontrib><description>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</description><identifier>ISSN: 0894-3230</identifier><identifier>EISSN: 1099-1395</identifier><identifier>DOI: 10.1002/poc.4592</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Agent-based models ; Anions ; Cellular automata ; Density functional theory ; Ketones ; Organic chemistry</subject><ispartof>Journal of physical organic chemistry, 2024-03, Vol.37 (3)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</cites><orcidid>0000-0002-7642-2619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bowers, Gregory A.</creatorcontrib><creatorcontrib>Baldasare, Corey A.</creatorcontrib><creatorcontrib>Seybold, Paul G.</creatorcontrib><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><title>Journal of physical organic chemistry</title><description>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</description><subject>Agent-based models</subject><subject>Anions</subject><subject>Cellular automata</subject><subject>Density functional theory</subject><subject>Ketones</subject><subject>Organic chemistry</subject><issn>0894-3230</issn><issn>1099-1395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqUg8QiWWFhS7N92ErNVFTepgqW7ZTt25TaNWzsZuvEIPCNPQqoyneFcdPQhdE_JjBICT_toZ1xIuEATSqQsKJPiEk1ILXnBgJFrdJPzhpDRE9UEfS5j3IZujUOXQ-Oe8bzT7TGHjKPHW9fH3-8f18UWu8MQ2mBSGHZ4yKeGXruuH22js2vwLjauzbfoyus2u7t_naLV68tq8V4sv94-FvNlYUGQvhDaE2YaAJDclrS0pHbCs0paZ7jhTQnaWELBVdZqDsLXFqQwIEvgrPFsih7Os_sUD4PLvdrEIY3PswIJFeEcaj6mHs8pm2LOyXm1T2Gn01FRok6w1AhLnWCxP5xlXr8</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Bowers, Gregory A.</creator><creator>Baldasare, Corey A.</creator><creator>Seybold, Paul G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7642-2619</orcidid></search><sort><creationdate>202403</creationdate><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><author>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Anions</topic><topic>Cellular automata</topic><topic>Density functional theory</topic><topic>Ketones</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Gregory A.</creatorcontrib><creatorcontrib>Baldasare, Corey A.</creatorcontrib><creatorcontrib>Seybold, Paul G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Gregory A.</au><au>Baldasare, Corey A.</au><au>Seybold, Paul G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</atitle><jtitle>Journal of physical organic chemistry</jtitle><date>2024-03</date><risdate>2024</risdate><volume>37</volume><issue>3</issue><issn>0894-3230</issn><eissn>1099-1395</eissn><abstract>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/poc.4592</doi><orcidid>https://orcid.org/0000-0002-7642-2619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-3230
ispartof Journal of physical organic chemistry, 2024-03, Vol.37 (3)
issn 0894-3230
1099-1395
language eng
recordid cdi_proquest_journals_2927044284
source Wiley-Blackwell Read & Publish Collection
subjects Agent-based models
Anions
Cellular automata
Density functional theory
Ketones
Organic chemistry
title Looking inside: Analysis of keto‐enol equilibrium using agent‐based models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20inside:%20Analysis%20of%20keto%E2%80%90enol%20equilibrium%20using%20agent%E2%80%90based%20models&rft.jtitle=Journal%20of%20physical%20organic%20chemistry&rft.au=Bowers,%20Gregory%20A.&rft.date=2024-03&rft.volume=37&rft.issue=3&rft.issn=0894-3230&rft.eissn=1099-1395&rft_id=info:doi/10.1002/poc.4592&rft_dat=%3Cproquest_cross%3E2927044284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927044284&rft_id=info:pmid/&rfr_iscdi=true