Loading…
Looking inside: Analysis of keto‐enol equilibrium using agent‐based models
The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalou...
Saved in:
Published in: | Journal of physical organic chemistry 2024-03, Vol.37 (3) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Journal of physical organic chemistry |
container_volume | 37 |
creator | Bowers, Gregory A. Baldasare, Corey A. Seybold, Paul G. |
description | The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form. |
doi_str_mv | 10.1002/poc.4592 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927044284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927044284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqUg8QiWWFhS7N92ErNVFTepgqW7ZTt25TaNWzsZuvEIPCNPQqoyneFcdPQhdE_JjBICT_toZ1xIuEATSqQsKJPiEk1ILXnBgJFrdJPzhpDRE9UEfS5j3IZujUOXQ-Oe8bzT7TGHjKPHW9fH3-8f18UWu8MQ2mBSGHZ4yKeGXruuH22js2vwLjauzbfoyus2u7t_naLV68tq8V4sv94-FvNlYUGQvhDaE2YaAJDclrS0pHbCs0paZ7jhTQnaWELBVdZqDsLXFqQwIEvgrPFsih7Os_sUD4PLvdrEIY3PswIJFeEcaj6mHs8pm2LOyXm1T2Gn01FRok6w1AhLnWCxP5xlXr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927044284</pqid></control><display><type>article</type><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</creator><creatorcontrib>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</creatorcontrib><description>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</description><identifier>ISSN: 0894-3230</identifier><identifier>EISSN: 1099-1395</identifier><identifier>DOI: 10.1002/poc.4592</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Agent-based models ; Anions ; Cellular automata ; Density functional theory ; Ketones ; Organic chemistry</subject><ispartof>Journal of physical organic chemistry, 2024-03, Vol.37 (3)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</cites><orcidid>0000-0002-7642-2619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bowers, Gregory A.</creatorcontrib><creatorcontrib>Baldasare, Corey A.</creatorcontrib><creatorcontrib>Seybold, Paul G.</creatorcontrib><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><title>Journal of physical organic chemistry</title><description>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</description><subject>Agent-based models</subject><subject>Anions</subject><subject>Cellular automata</subject><subject>Density functional theory</subject><subject>Ketones</subject><subject>Organic chemistry</subject><issn>0894-3230</issn><issn>1099-1395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqUg8QiWWFhS7N92ErNVFTepgqW7ZTt25TaNWzsZuvEIPCNPQqoyneFcdPQhdE_JjBICT_toZ1xIuEATSqQsKJPiEk1ILXnBgJFrdJPzhpDRE9UEfS5j3IZujUOXQ-Oe8bzT7TGHjKPHW9fH3-8f18UWu8MQ2mBSGHZ4yKeGXruuH22js2vwLjauzbfoyus2u7t_naLV68tq8V4sv94-FvNlYUGQvhDaE2YaAJDclrS0pHbCs0paZ7jhTQnaWELBVdZqDsLXFqQwIEvgrPFsih7Os_sUD4PLvdrEIY3PswIJFeEcaj6mHs8pm2LOyXm1T2Gn01FRok6w1AhLnWCxP5xlXr8</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Bowers, Gregory A.</creator><creator>Baldasare, Corey A.</creator><creator>Seybold, Paul G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7642-2619</orcidid></search><sort><creationdate>202403</creationdate><title>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</title><author>Bowers, Gregory A. ; Baldasare, Corey A. ; Seybold, Paul G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Anions</topic><topic>Cellular automata</topic><topic>Density functional theory</topic><topic>Ketones</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Gregory A.</creatorcontrib><creatorcontrib>Baldasare, Corey A.</creatorcontrib><creatorcontrib>Seybold, Paul G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Gregory A.</au><au>Baldasare, Corey A.</au><au>Seybold, Paul G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking inside: Analysis of keto‐enol equilibrium using agent‐based models</atitle><jtitle>Journal of physical organic chemistry</jtitle><date>2024-03</date><risdate>2024</risdate><volume>37</volume><issue>3</issue><issn>0894-3230</issn><eissn>1099-1395</eissn><abstract>The subject of keto‐enol equilibrium has a long history and well‐established position within physical organic chemistry. Nonetheless, one still finds numerous reports of confusing findings and questions of accuracy when dealing with its practical application. In this report, some apparently anomalous recent observations are reviewed and then reexamined using density functional theory computations and agent‐based (cellular automata) models of the keto‐enol‐anion equilibrium system. It becomes apparent that a resolution of many of the results can be achieved by taking into account the fact that although the ketone form is often present in overwhelmingly greater concentration, the enol can still contribute significantly to formation of the anion through its much greater acidity. Thus, in these cases, dissociation data assigned solely to the ketone form should in fact be recognized as representing a mixture of contributions from both the keto and the (neglected) enol form.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/poc.4592</doi><orcidid>https://orcid.org/0000-0002-7642-2619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3230 |
ispartof | Journal of physical organic chemistry, 2024-03, Vol.37 (3) |
issn | 0894-3230 1099-1395 |
language | eng |
recordid | cdi_proquest_journals_2927044284 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agent-based models Anions Cellular automata Density functional theory Ketones Organic chemistry |
title | Looking inside: Analysis of keto‐enol equilibrium using agent‐based models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20inside:%20Analysis%20of%20keto%E2%80%90enol%20equilibrium%20using%20agent%E2%80%90based%20models&rft.jtitle=Journal%20of%20physical%20organic%20chemistry&rft.au=Bowers,%20Gregory%20A.&rft.date=2024-03&rft.volume=37&rft.issue=3&rft.issn=0894-3230&rft.eissn=1099-1395&rft_id=info:doi/10.1002/poc.4592&rft_dat=%3Cproquest_cross%3E2927044284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-5af03bd22294c616c08e5f379ceb4b4d62abc012e7cca425f8c295b296243df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927044284&rft_id=info:pmid/&rfr_iscdi=true |