Loading…
RoeNet: Predicting discontinuity of hyperbolic systems from continuous data
Predicting future discontinuous phenomena that are unobservable from training data sets has long been a challenging problem in scientific machine learning. We introduce a novel paradigm to predict the emergence and evolution of various discontinuities of hyperbolic partial differential equations (PD...
Saved in:
Published in: | International journal for numerical methods in engineering 2024-03, Vol.125 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting future discontinuous phenomena that are unobservable from training data sets has long been a challenging problem in scientific machine learning. We introduce a novel paradigm to predict the emergence and evolution of various discontinuities of hyperbolic partial differential equations (PDEs) based on given training data over a short window with limited discontinuity information. Our method is inspired by the classical Roe solver [P. L. Roe, J Comput Phys., vol. 43, 1981], a basic tool for simulating various hyperbolic PDEs in computational physics. By carefully designing the computing primitives, the data flow, and the novel pseudoinverse processing module, we enable our data‐driven predictor to satisfy all the essential mathematical criteria of a Roe solver and hence deliver accurate predictions of hyperbolic PDEs. We demonstrate through various examples that our data‐driven Roe predictor outperforms original human‐designed Roe solver and deep neural networks with weak priors in terms of accuracy and robustness. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.7406 |