Loading…

A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS

At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of thi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-04, Vol.271 (6), p.700-707
Main Author: Gutman, Alexander E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3
container_end_page 707
container_issue 6
container_start_page 700
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 271
creator Gutman, Alexander E.
description At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.
doi_str_mv 10.1007/s10958-023-06599-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2927437414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782727002</galeid><sourcerecordid>A782727002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</originalsourceid><addsrcrecordid>eNp9kV1rwjAUhsPYYM7tD-yqsKtdxOWrprmsEj_A2VHdbkNsE6lo6xKF7d8vzoEIMgJJCM-TwzkvAI8YdTBC_MVjJOIEIkIh6sZCQHYFWjjmFCZcxNfhjjiBlHJ2C-68X6EgdRPaAiyNZnI6l9O-jN5yOZP5RzofZ9NoPpJZLl-jQZZHvSybyHQapZOh7OXp7B7cWL325uHvbIP3gZz3R3CSDcf9dAILShiDSUJiXohiYYy2wi5onBSEE2y7nDBUEkF1ySmNBRa4ay0zJBZh07TE3LLS0jZ4Ov67dc3n3vidWjV7V4eSigjCWWgHsxO11Gujqto2O6eLTeULlfIkFOQozKUN4AVqaWrj9Lqpja3C8xnfucCHVZpNVVwUns-EwOzM126p996r8Sw_Z8mRLVzjvTNWbV210e5bYaQOgapjoCqw6jdQdeiTHiUf4Hpp3Gka_1g_B1GZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927437414</pqid></control><display><type>article</type><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><source>Springer Link</source><creator>Gutman, Alexander E.</creator><creatorcontrib>Gutman, Alexander E.</creatorcontrib><description>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06599-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Laws, regulations and rules ; Mathematics ; Mathematics and Statistics ; Questions ; Theorems ; Venn diagrams</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-04, Vol.271 (6), p.700-707</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</cites><orcidid>0000-0003-2030-7459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gutman, Alexander E.</creatorcontrib><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</description><subject>Algebra</subject><subject>Laws, regulations and rules</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Theorems</subject><subject>Venn diagrams</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rwjAUhsPYYM7tD-yqsKtdxOWrprmsEj_A2VHdbkNsE6lo6xKF7d8vzoEIMgJJCM-TwzkvAI8YdTBC_MVjJOIEIkIh6sZCQHYFWjjmFCZcxNfhjjiBlHJ2C-68X6EgdRPaAiyNZnI6l9O-jN5yOZP5RzofZ9NoPpJZLl-jQZZHvSybyHQapZOh7OXp7B7cWL325uHvbIP3gZz3R3CSDcf9dAILShiDSUJiXohiYYy2wi5onBSEE2y7nDBUEkF1ySmNBRa4ay0zJBZh07TE3LLS0jZ4Ov67dc3n3vidWjV7V4eSigjCWWgHsxO11Gujqto2O6eLTeULlfIkFOQozKUN4AVqaWrj9Lqpja3C8xnfucCHVZpNVVwUns-EwOzM126p996r8Sw_Z8mRLVzjvTNWbV210e5bYaQOgapjoCqw6jdQdeiTHiUf4Hpp3Gka_1g_B1GZVw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Gutman, Alexander E.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-2030-7459</orcidid></search><sort><creationdate>20230401</creationdate><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><author>Gutman, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Laws, regulations and rules</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Theorems</topic><topic>Venn diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Alexander E.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Alexander E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>271</volume><issue>6</issue><spage>700</spage><epage>707</epage><pages>700-707</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06599-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2030-7459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2023-04, Vol.271 (6), p.700-707
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2927437414
source Springer Link
subjects Algebra
Laws, regulations and rules
Mathematics
Mathematics and Statistics
Questions
Theorems
Venn diagrams
title A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SENTENCE%20PRESERVATION%20THEOREM%20FOR%20BOOLEAN%20ALGEBRAS&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gutman,%20Alexander%20E.&rft.date=2023-04-01&rft.volume=271&rft.issue=6&rft.spage=700&rft.epage=707&rft.pages=700-707&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06599-4&rft_dat=%3Cgale_proqu%3EA782727002%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927437414&rft_id=info:pmid/&rft_galeid=A782727002&rfr_iscdi=true