Loading…
A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS
At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of thi...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-04, Vol.271 (6), p.700-707 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3 |
container_end_page | 707 |
container_issue | 6 |
container_start_page | 700 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 271 |
creator | Gutman, Alexander E. |
description | At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras. |
doi_str_mv | 10.1007/s10958-023-06599-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2927437414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782727002</galeid><sourcerecordid>A782727002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</originalsourceid><addsrcrecordid>eNp9kV1rwjAUhsPYYM7tD-yqsKtdxOWrprmsEj_A2VHdbkNsE6lo6xKF7d8vzoEIMgJJCM-TwzkvAI8YdTBC_MVjJOIEIkIh6sZCQHYFWjjmFCZcxNfhjjiBlHJ2C-68X6EgdRPaAiyNZnI6l9O-jN5yOZP5RzofZ9NoPpJZLl-jQZZHvSybyHQapZOh7OXp7B7cWL325uHvbIP3gZz3R3CSDcf9dAILShiDSUJiXohiYYy2wi5onBSEE2y7nDBUEkF1ySmNBRa4ay0zJBZh07TE3LLS0jZ4Ov67dc3n3vidWjV7V4eSigjCWWgHsxO11Gujqto2O6eLTeULlfIkFOQozKUN4AVqaWrj9Lqpja3C8xnfucCHVZpNVVwUns-EwOzM126p996r8Sw_Z8mRLVzjvTNWbV210e5bYaQOgapjoCqw6jdQdeiTHiUf4Hpp3Gka_1g_B1GZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927437414</pqid></control><display><type>article</type><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><source>Springer Link</source><creator>Gutman, Alexander E.</creator><creatorcontrib>Gutman, Alexander E.</creatorcontrib><description>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06599-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Laws, regulations and rules ; Mathematics ; Mathematics and Statistics ; Questions ; Theorems ; Venn diagrams</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-04, Vol.271 (6), p.700-707</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</cites><orcidid>0000-0003-2030-7459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gutman, Alexander E.</creatorcontrib><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</description><subject>Algebra</subject><subject>Laws, regulations and rules</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Theorems</subject><subject>Venn diagrams</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rwjAUhsPYYM7tD-yqsKtdxOWrprmsEj_A2VHdbkNsE6lo6xKF7d8vzoEIMgJJCM-TwzkvAI8YdTBC_MVjJOIEIkIh6sZCQHYFWjjmFCZcxNfhjjiBlHJ2C-68X6EgdRPaAiyNZnI6l9O-jN5yOZP5RzofZ9NoPpJZLl-jQZZHvSybyHQapZOh7OXp7B7cWL325uHvbIP3gZz3R3CSDcf9dAILShiDSUJiXohiYYy2wi5onBSEE2y7nDBUEkF1ySmNBRa4ay0zJBZh07TE3LLS0jZ4Ov67dc3n3vidWjV7V4eSigjCWWgHsxO11Gujqto2O6eLTeULlfIkFOQozKUN4AVqaWrj9Lqpja3C8xnfucCHVZpNVVwUns-EwOzM126p996r8Sw_Z8mRLVzjvTNWbV210e5bYaQOgapjoCqw6jdQdeiTHiUf4Hpp3Gka_1g_B1GZVw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Gutman, Alexander E.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-2030-7459</orcidid></search><sort><creationdate>20230401</creationdate><title>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</title><author>Gutman, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Laws, regulations and rules</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Theorems</topic><topic>Venn diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Alexander E.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Alexander E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>271</volume><issue>6</issue><spage>700</spage><epage>707</epage><pages>700-707</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>At the initial stages of studying the theory of Boolean algebras, before trying to prove or disprove any simple sentence, students are usually asked to test their intuition using Venn diagrams or truth tables. A natural question arises: is it necessary to invent a proof after a positive check of this kind? Isn’t such a check itself a rigorous proof of the verified sentence? And if this is not true in the general case, for which sentences is this true? We answer the question and prove an analog of the Jech Theorem for arbitrary (not necessarily complete) Boolean algebras.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06599-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2030-7459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-04, Vol.271 (6), p.700-707 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2927437414 |
source | Springer Link |
subjects | Algebra Laws, regulations and rules Mathematics Mathematics and Statistics Questions Theorems Venn diagrams |
title | A SENTENCE PRESERVATION THEOREM FOR BOOLEAN ALGEBRAS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SENTENCE%20PRESERVATION%20THEOREM%20FOR%20BOOLEAN%20ALGEBRAS&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gutman,%20Alexander%20E.&rft.date=2023-04-01&rft.volume=271&rft.issue=6&rft.spage=700&rft.epage=707&rft.pages=700-707&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06599-4&rft_dat=%3Cgale_proqu%3EA782727002%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3244-88257c9cbeeaf9fb358c2721f67240d293ad733591916ff4e2594e2a3d17f4df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927437414&rft_id=info:pmid/&rft_galeid=A782727002&rfr_iscdi=true |