Loading…
Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy
The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples...
Saved in:
Published in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2023, Vol.57 (1), p.1-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 1 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 57 |
creator | Volkov, R. L. Borgardt, N. I. |
description | The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO
2
substrate an amorphous layer of Mo
0.06
Si
0.31
N
0.63
93 nm thick is formed, which is successively coated with polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo
0.06
Si
0.31
N
0.63
layer, and also showed that polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively. |
doi_str_mv | 10.1134/S1063782623010098 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2927440461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782726808</galeid><sourcerecordid>A782726808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</originalsourceid><addsrcrecordid>eNp1UctOwzAQjBBIlMcHcIvEOWB7ncQ5VhWPSi0cWs6R5ayLq9QutnPI3-OoSBwQ8sG745nZXW-W3VHyQCnwxw0lFdSCVQwIJaQRZ9mMkoYUFa-b8ymuoJjeL7OrEPaEUCpKPsvGZYc2Gm2UjMbZ3Ok8fmK-iX5QcfA4AW_SuqBkj_lKjujDhK2HPpp-SvNXjOidcoejCyZiyIdg7C7femnDwYQw2T71qKJPwdoon8zccbzJLrTsA97-3NfZx_PTdvFarN5flov5qlBA6ljwEsqmI1SiFBoAOgAmBeugFFoqXpVaVlQCIAiqOgJcat0o1tBS6a7mDK6z-5Pv0buvAUNs927wNpVsWcNqzgmvaGI9nFi7NGdrrHbRS5VOhwejnEVtEj5PP1izShCRBPQkmOYJHnV79OYg_dhS0k4raf-sJGnYSRMS1-7Q_7byv-gbbKqPTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927440461</pqid></control><display><type>article</type><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><source>Springer Nature</source><creator>Volkov, R. L. ; Borgardt, N. I.</creator><creatorcontrib>Volkov, R. L. ; Borgardt, N. I.</creatorcontrib><description>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO
2
substrate an amorphous layer of Mo
0.06
Si
0.31
N
0.63
93 nm thick is formed, which is successively coated with polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo
0.06
Si
0.31
N
0.63
layer, and also showed that polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782623010098</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphous materials ; Basic Research ; Composition ; Crystallites ; Cubic lattice ; Electron microscopy ; Electrons ; Foils ; Glass substrates ; High resolution electron microscopy ; Ion beams ; Magnetic Materials ; Magnetism ; Multilayers ; Physics ; Physics and Astronomy ; Polycrystals ; Silicon dioxide ; Thickness measurement ; Transmission electron microscopy</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2023, Vol.57 (1), p.1-10</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7826, Semiconductors, 2023, Vol. 57, No. 1, pp. 1–10. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Elektronika, 2023, Vol. 28, No. 6, pp. 711–726.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Volkov, R. L.</creatorcontrib><creatorcontrib>Borgardt, N. I.</creatorcontrib><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO
2
substrate an amorphous layer of Mo
0.06
Si
0.31
N
0.63
93 nm thick is formed, which is successively coated with polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo
0.06
Si
0.31
N
0.63
layer, and also showed that polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</description><subject>Amorphous materials</subject><subject>Basic Research</subject><subject>Composition</subject><subject>Crystallites</subject><subject>Cubic lattice</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Foils</subject><subject>Glass substrates</subject><subject>High resolution electron microscopy</subject><subject>Ion beams</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Silicon dioxide</subject><subject>Thickness measurement</subject><subject>Transmission electron microscopy</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQjBBIlMcHcIvEOWB7ncQ5VhWPSi0cWs6R5ayLq9QutnPI3-OoSBwQ8sG745nZXW-W3VHyQCnwxw0lFdSCVQwIJaQRZ9mMkoYUFa-b8ymuoJjeL7OrEPaEUCpKPsvGZYc2Gm2UjMbZ3Ok8fmK-iX5QcfA4AW_SuqBkj_lKjujDhK2HPpp-SvNXjOidcoejCyZiyIdg7C7femnDwYQw2T71qKJPwdoon8zccbzJLrTsA97-3NfZx_PTdvFarN5flov5qlBA6ljwEsqmI1SiFBoAOgAmBeugFFoqXpVaVlQCIAiqOgJcat0o1tBS6a7mDK6z-5Pv0buvAUNs927wNpVsWcNqzgmvaGI9nFi7NGdrrHbRS5VOhwejnEVtEj5PP1izShCRBPQkmOYJHnV79OYg_dhS0k4raf-sJGnYSRMS1-7Q_7byv-gbbKqPTg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Volkov, R. L.</creator><creator>Borgardt, N. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><author>Volkov, R. L. ; Borgardt, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous materials</topic><topic>Basic Research</topic><topic>Composition</topic><topic>Crystallites</topic><topic>Cubic lattice</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Foils</topic><topic>Glass substrates</topic><topic>High resolution electron microscopy</topic><topic>Ion beams</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Silicon dioxide</topic><topic>Thickness measurement</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, R. L.</creatorcontrib><creatorcontrib>Borgardt, N. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, R. L.</au><au>Borgardt, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2023</date><risdate>2023</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO
2
substrate an amorphous layer of Mo
0.06
Si
0.31
N
0.63
93 nm thick is formed, which is successively coated with polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo
0.06
Si
0.31
N
0.63
layer, and also showed that polycrystalline layers of Cr
0.56
N
0.44
, Cr
0.74
C
0.06
N
0.2
, and Cr
0.4
N
0.26
O
0.3
formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782623010098</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2023, Vol.57 (1), p.1-10 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_proquest_journals_2927440461 |
source | Springer Nature |
subjects | Amorphous materials Basic Research Composition Crystallites Cubic lattice Electron microscopy Electrons Foils Glass substrates High resolution electron microscopy Ion beams Magnetic Materials Magnetism Multilayers Physics Physics and Astronomy Polycrystals Silicon dioxide Thickness measurement Transmission electron microscopy |
title | Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20Structure%20of%20Nanoscale%20Layers%20of%20Multilayer%20Heterocomposites%20using%20Transmission%20Electron%20Microscopy&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Volkov,%20R.%20L.&rft.date=2023&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782623010098&rft_dat=%3Cgale_proqu%3EA782726808%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927440461&rft_id=info:pmid/&rft_galeid=A782726808&rfr_iscdi=true |