Loading…
Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model
We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or...
Saved in:
Published in: | IEEE transactions on information theory 2024-03, Vol.70 (3), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43 |
container_end_page | 1 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | Deng, Chong Xu, Xin-Jian Ying, Shihui |
description | We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees. |
doi_str_mv | 10.1109/TIT.2023.3302283 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927607801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214123</ieee_id><sourcerecordid>2927607801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</originalsourceid><addsrcrecordid>eNpNkDtPAzEMgCMEEqWwMzBEYr6S171GOB6tVMTQMkdpztdee1wOJx3670nVDkyW7c-2_BFyz9mEc1Y-LWfLiWBCTqRkQhTygox4muZJmaXqkowY40VSKlVckxvvtzFVKRcjslsEdP2aVq73rQ_Q2wN1DV0MYAOajlbdPlaxjUjjkIYNxJ5BD_QV1giQVA4xslDT6WEAXKMZNnQRnN0YH1pLXzpnd_TT1dDdkqvGdB7uznFMvt_fltU0mX99zKrneWKFSkNSCsVqIW2h0lQUlsnS5lljLHCQzNbGWMWstKu8WWUy5fH72hqZZ0bVTeSUHJPH094B3e8efNBbt8c-ntSiFHnG8oLxSLETZdF5j9DoAdsfgwfNmT4q1VGpPirVZ6Vx5OE00gLAP1xwxYWUf8r-c38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927607801</pqid></control><display><type>article</type><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</creator><creatorcontrib>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</creatorcontrib><description>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3302283</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Clustering ; Clustering algorithms ; Consistency ; Eigenvectors ; Error correction ; Graph theory ; Hypergraph ; Image edge detection ; Linear matrix inequalities ; Nodes ; Numerical models ; Perturbation methods ; spectral clustering ; stochastic block model ; Stochastic processes</subject><ispartof>IEEE transactions on information theory, 2024-03, Vol.70 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</cites><orcidid>0000-0001-6088-976X ; 0000-0001-9423-0146 ; 0009-0001-9302-3513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Deng, Chong</creatorcontrib><creatorcontrib>Xu, Xin-Jian</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</description><subject>Approximation algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Consistency</subject><subject>Eigenvectors</subject><subject>Error correction</subject><subject>Graph theory</subject><subject>Hypergraph</subject><subject>Image edge detection</subject><subject>Linear matrix inequalities</subject><subject>Nodes</subject><subject>Numerical models</subject><subject>Perturbation methods</subject><subject>spectral clustering</subject><subject>stochastic block model</subject><subject>Stochastic processes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPAzEMgCMEEqWwMzBEYr6S171GOB6tVMTQMkdpztdee1wOJx3670nVDkyW7c-2_BFyz9mEc1Y-LWfLiWBCTqRkQhTygox4muZJmaXqkowY40VSKlVckxvvtzFVKRcjslsEdP2aVq73rQ_Q2wN1DV0MYAOajlbdPlaxjUjjkIYNxJ5BD_QV1giQVA4xslDT6WEAXKMZNnQRnN0YH1pLXzpnd_TT1dDdkqvGdB7uznFMvt_fltU0mX99zKrneWKFSkNSCsVqIW2h0lQUlsnS5lljLHCQzNbGWMWstKu8WWUy5fH72hqZZ0bVTeSUHJPH094B3e8efNBbt8c-ntSiFHnG8oLxSLETZdF5j9DoAdsfgwfNmT4q1VGpPirVZ6Vx5OE00gLAP1xwxYWUf8r-c38</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Deng, Chong</creator><creator>Xu, Xin-Jian</creator><creator>Ying, Shihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6088-976X</orcidid><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0009-0001-9302-3513</orcidid></search><sort><creationdate>20240301</creationdate><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><author>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Consistency</topic><topic>Eigenvectors</topic><topic>Error correction</topic><topic>Graph theory</topic><topic>Hypergraph</topic><topic>Image edge detection</topic><topic>Linear matrix inequalities</topic><topic>Nodes</topic><topic>Numerical models</topic><topic>Perturbation methods</topic><topic>spectral clustering</topic><topic>stochastic block model</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chong</creatorcontrib><creatorcontrib>Xu, Xin-Jian</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chong</au><au>Xu, Xin-Jian</au><au>Ying, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3302283</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6088-976X</orcidid><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0009-0001-9302-3513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-03, Vol.70 (3), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2927607801 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation algorithms Clustering Clustering algorithms Consistency Eigenvectors Error correction Graph theory Hypergraph Image edge detection Linear matrix inequalities Nodes Numerical models Perturbation methods spectral clustering stochastic block model Stochastic processes |
title | Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Consistency%20of%20Spectral%20Clustering%20for%20the%20Sparse%20Degree-Corrected%20Hypergraph%20Stochastic%20Block%20Model&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Deng,%20Chong&rft.date=2024-03-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3302283&rft_dat=%3Cproquest_cross%3E2927607801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927607801&rft_id=info:pmid/&rft_ieee_id=10214123&rfr_iscdi=true |