Loading…

Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model

We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2024-03, Vol.70 (3), p.1-1
Main Authors: Deng, Chong, Xu, Xin-Jian, Ying, Shihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on information theory
container_volume 70
creator Deng, Chong
Xu, Xin-Jian
Ying, Shihui
description We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.
doi_str_mv 10.1109/TIT.2023.3302283
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927607801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214123</ieee_id><sourcerecordid>2927607801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</originalsourceid><addsrcrecordid>eNpNkDtPAzEMgCMEEqWwMzBEYr6S171GOB6tVMTQMkdpztdee1wOJx3670nVDkyW7c-2_BFyz9mEc1Y-LWfLiWBCTqRkQhTygox4muZJmaXqkowY40VSKlVckxvvtzFVKRcjslsEdP2aVq73rQ_Q2wN1DV0MYAOajlbdPlaxjUjjkIYNxJ5BD_QV1giQVA4xslDT6WEAXKMZNnQRnN0YH1pLXzpnd_TT1dDdkqvGdB7uznFMvt_fltU0mX99zKrneWKFSkNSCsVqIW2h0lQUlsnS5lljLHCQzNbGWMWstKu8WWUy5fH72hqZZ0bVTeSUHJPH094B3e8efNBbt8c-ntSiFHnG8oLxSLETZdF5j9DoAdsfgwfNmT4q1VGpPirVZ6Vx5OE00gLAP1xwxYWUf8r-c38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927607801</pqid></control><display><type>article</type><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</creator><creatorcontrib>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</creatorcontrib><description>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3302283</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Clustering ; Clustering algorithms ; Consistency ; Eigenvectors ; Error correction ; Graph theory ; Hypergraph ; Image edge detection ; Linear matrix inequalities ; Nodes ; Numerical models ; Perturbation methods ; spectral clustering ; stochastic block model ; Stochastic processes</subject><ispartof>IEEE transactions on information theory, 2024-03, Vol.70 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</cites><orcidid>0000-0001-6088-976X ; 0000-0001-9423-0146 ; 0009-0001-9302-3513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Deng, Chong</creatorcontrib><creatorcontrib>Xu, Xin-Jian</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</description><subject>Approximation algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Consistency</subject><subject>Eigenvectors</subject><subject>Error correction</subject><subject>Graph theory</subject><subject>Hypergraph</subject><subject>Image edge detection</subject><subject>Linear matrix inequalities</subject><subject>Nodes</subject><subject>Numerical models</subject><subject>Perturbation methods</subject><subject>spectral clustering</subject><subject>stochastic block model</subject><subject>Stochastic processes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPAzEMgCMEEqWwMzBEYr6S171GOB6tVMTQMkdpztdee1wOJx3670nVDkyW7c-2_BFyz9mEc1Y-LWfLiWBCTqRkQhTygox4muZJmaXqkowY40VSKlVckxvvtzFVKRcjslsEdP2aVq73rQ_Q2wN1DV0MYAOajlbdPlaxjUjjkIYNxJ5BD_QV1giQVA4xslDT6WEAXKMZNnQRnN0YH1pLXzpnd_TT1dDdkqvGdB7uznFMvt_fltU0mX99zKrneWKFSkNSCsVqIW2h0lQUlsnS5lljLHCQzNbGWMWstKu8WWUy5fH72hqZZ0bVTeSUHJPH094B3e8efNBbt8c-ntSiFHnG8oLxSLETZdF5j9DoAdsfgwfNmT4q1VGpPirVZ6Vx5OE00gLAP1xwxYWUf8r-c38</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Deng, Chong</creator><creator>Xu, Xin-Jian</creator><creator>Ying, Shihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6088-976X</orcidid><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0009-0001-9302-3513</orcidid></search><sort><creationdate>20240301</creationdate><title>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</title><author>Deng, Chong ; Xu, Xin-Jian ; Ying, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Consistency</topic><topic>Eigenvectors</topic><topic>Error correction</topic><topic>Graph theory</topic><topic>Hypergraph</topic><topic>Image edge detection</topic><topic>Linear matrix inequalities</topic><topic>Nodes</topic><topic>Numerical models</topic><topic>Perturbation methods</topic><topic>spectral clustering</topic><topic>stochastic block model</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chong</creatorcontrib><creatorcontrib>Xu, Xin-Jian</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chong</au><au>Xu, Xin-Jian</au><au>Ying, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as Ω(log n) with n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the "leave-one-out" technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3302283</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6088-976X</orcidid><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0009-0001-9302-3513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-03, Vol.70 (3), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2927607801
source IEEE Electronic Library (IEL) Journals
subjects Approximation algorithms
Clustering
Clustering algorithms
Consistency
Eigenvectors
Error correction
Graph theory
Hypergraph
Image edge detection
Linear matrix inequalities
Nodes
Numerical models
Perturbation methods
spectral clustering
stochastic block model
Stochastic processes
title Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Consistency%20of%20Spectral%20Clustering%20for%20the%20Sparse%20Degree-Corrected%20Hypergraph%20Stochastic%20Block%20Model&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Deng,%20Chong&rft.date=2024-03-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3302283&rft_dat=%3Cproquest_cross%3E2927607801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-9240d23c845528c039c76face1e30cdaac40c3cb7fb6351110dca376a4df6fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927607801&rft_id=info:pmid/&rft_ieee_id=10214123&rfr_iscdi=true