Loading…

A game theory based approach for distributed dynamic spectrum access

In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for effic...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary intelligence 2024-02, Vol.17 (1), p.275-282
Main Authors: Qu, Chongxiao, Fan, Changjun, Wang, Yufeng, Liu, Ming, Zhang, Yongjin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3
cites cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3
container_end_page 282
container_issue 1
container_start_page 275
container_title Evolutionary intelligence
container_volume 17
creator Qu, Chongxiao
Fan, Changjun
Wang, Yufeng
Liu, Ming
Zhang, Yongjin
description In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process, U users compete with each other for C shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.
doi_str_mv 10.1007/s12065-022-00709-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOjh3bY1WgIFVigdlybKdNRZpgJ0P-PYYg2JjuTu99d6eH0DWFWwog7xJlUAoCjJE8gibTCVpQVXIiNJWnvz3oc3SR0gGgZCD5At2v8M62AQ_70MUJVzYFj23fx866Pa67iH2ThthU45AFPx1t2zic-uCGOLbYOhdSukRntX1P4eqnLtHb48Pr-olsXzbP69WWuILqgTAuGFfguRfBSw9aeOFCrUsuaSUFeKUck0p776TkqgpllpXzUtdB-cIVS3Qz783vfYwhDebQjfGYTxqmMylEIVV2sdnlYpdSDLXpY9PaOBkK5istM6dlclrmOy0zZaiYoZTNx12If6v_oT4BexdtuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855378</pqid></control><display><type>article</type><title>A game theory based approach for distributed dynamic spectrum access</title><source>Springer Nature</source><creator>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</creator><creatorcontrib>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</creatorcontrib><description>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process, U users compete with each other for C shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-022-00709-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Channels ; Collision avoidance ; Control ; Engineering ; Game theory ; Mathematical and Computational Engineering ; Mechatronics ; Robotics ; Special Issue ; Statistical Physics and Dynamical Systems ; Wireless networks</subject><ispartof>Evolutionary intelligence, 2024-02, Vol.17 (1), p.275-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</citedby><cites>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qu, Chongxiao</creatorcontrib><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><title>A game theory based approach for distributed dynamic spectrum access</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process, U users compete with each other for C shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Channels</subject><subject>Collision avoidance</subject><subject>Control</subject><subject>Engineering</subject><subject>Game theory</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Wireless networks</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOjh3bY1WgIFVigdlybKdNRZpgJ0P-PYYg2JjuTu99d6eH0DWFWwog7xJlUAoCjJE8gibTCVpQVXIiNJWnvz3oc3SR0gGgZCD5At2v8M62AQ_70MUJVzYFj23fx866Pa67iH2ThthU45AFPx1t2zic-uCGOLbYOhdSukRntX1P4eqnLtHb48Pr-olsXzbP69WWuILqgTAuGFfguRfBSw9aeOFCrUsuaSUFeKUck0p776TkqgpllpXzUtdB-cIVS3Qz783vfYwhDebQjfGYTxqmMylEIVV2sdnlYpdSDLXpY9PaOBkK5istM6dlclrmOy0zZaiYoZTNx12If6v_oT4BexdtuQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Qu, Chongxiao</creator><creator>Fan, Changjun</creator><creator>Wang, Yufeng</creator><creator>Liu, Ming</creator><creator>Zhang, Yongjin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>A game theory based approach for distributed dynamic spectrum access</title><author>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Channels</topic><topic>Collision avoidance</topic><topic>Control</topic><topic>Engineering</topic><topic>Game theory</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Chongxiao</creatorcontrib><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Chongxiao</au><au>Fan, Changjun</au><au>Wang, Yufeng</au><au>Liu, Ming</au><au>Zhang, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A game theory based approach for distributed dynamic spectrum access</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>275</spage><epage>282</epage><pages>275-282</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process, U users compete with each other for C shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-022-00709-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2024-02, Vol.17 (1), p.275-282
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2927855378
source Springer Nature
subjects Applications of Mathematics
Artificial Intelligence
Bioinformatics
Channels
Collision avoidance
Control
Engineering
Game theory
Mathematical and Computational Engineering
Mechatronics
Robotics
Special Issue
Statistical Physics and Dynamical Systems
Wireless networks
title A game theory based approach for distributed dynamic spectrum access
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20game%20theory%20based%20approach%20for%20distributed%20dynamic%20spectrum%20access&rft.jtitle=Evolutionary%20intelligence&rft.au=Qu,%20Chongxiao&rft.date=2024-02-01&rft.volume=17&rft.issue=1&rft.spage=275&rft.epage=282&rft.pages=275-282&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-022-00709-y&rft_dat=%3Cproquest_cross%3E2927855378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927855378&rft_id=info:pmid/&rfr_iscdi=true