Loading…
A game theory based approach for distributed dynamic spectrum access
In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for effic...
Saved in:
Published in: | Evolutionary intelligence 2024-02, Vol.17 (1), p.275-282 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3 |
container_end_page | 282 |
container_issue | 1 |
container_start_page | 275 |
container_title | Evolutionary intelligence |
container_volume | 17 |
creator | Qu, Chongxiao Fan, Changjun Wang, Yufeng Liu, Ming Zhang, Yongjin |
description | In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process,
U
users compete with each other for
C
shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results. |
doi_str_mv | 10.1007/s12065-022-00709-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOjh3bY1WgIFVigdlybKdNRZpgJ0P-PYYg2JjuTu99d6eH0DWFWwog7xJlUAoCjJE8gibTCVpQVXIiNJWnvz3oc3SR0gGgZCD5At2v8M62AQ_70MUJVzYFj23fx866Pa67iH2ThthU45AFPx1t2zic-uCGOLbYOhdSukRntX1P4eqnLtHb48Pr-olsXzbP69WWuILqgTAuGFfguRfBSw9aeOFCrUsuaSUFeKUck0p776TkqgpllpXzUtdB-cIVS3Qz783vfYwhDebQjfGYTxqmMylEIVV2sdnlYpdSDLXpY9PaOBkK5istM6dlclrmOy0zZaiYoZTNx12If6v_oT4BexdtuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855378</pqid></control><display><type>article</type><title>A game theory based approach for distributed dynamic spectrum access</title><source>Springer Nature</source><creator>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</creator><creatorcontrib>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</creatorcontrib><description>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process,
U
users compete with each other for
C
shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-022-00709-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Channels ; Collision avoidance ; Control ; Engineering ; Game theory ; Mathematical and Computational Engineering ; Mechatronics ; Robotics ; Special Issue ; Statistical Physics and Dynamical Systems ; Wireless networks</subject><ispartof>Evolutionary intelligence, 2024-02, Vol.17 (1), p.275-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</citedby><cites>FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qu, Chongxiao</creatorcontrib><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><title>A game theory based approach for distributed dynamic spectrum access</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process,
U
users compete with each other for
C
shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Channels</subject><subject>Collision avoidance</subject><subject>Control</subject><subject>Engineering</subject><subject>Game theory</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Wireless networks</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOjh3bY1WgIFVigdlybKdNRZpgJ0P-PYYg2JjuTu99d6eH0DWFWwog7xJlUAoCjJE8gibTCVpQVXIiNJWnvz3oc3SR0gGgZCD5At2v8M62AQ_70MUJVzYFj23fx866Pa67iH2ThthU45AFPx1t2zic-uCGOLbYOhdSukRntX1P4eqnLtHb48Pr-olsXzbP69WWuILqgTAuGFfguRfBSw9aeOFCrUsuaSUFeKUck0p776TkqgpllpXzUtdB-cIVS3Qz783vfYwhDebQjfGYTxqmMylEIVV2sdnlYpdSDLXpY9PaOBkK5istM6dlclrmOy0zZaiYoZTNx12If6v_oT4BexdtuQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Qu, Chongxiao</creator><creator>Fan, Changjun</creator><creator>Wang, Yufeng</creator><creator>Liu, Ming</creator><creator>Zhang, Yongjin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>A game theory based approach for distributed dynamic spectrum access</title><author>Qu, Chongxiao ; Fan, Changjun ; Wang, Yufeng ; Liu, Ming ; Zhang, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Channels</topic><topic>Collision avoidance</topic><topic>Control</topic><topic>Engineering</topic><topic>Game theory</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Chongxiao</creatorcontrib><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Chongxiao</au><au>Fan, Changjun</au><au>Wang, Yufeng</au><au>Liu, Ming</au><au>Zhang, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A game theory based approach for distributed dynamic spectrum access</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>275</spage><epage>282</epage><pages>275-282</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>In this study, we explore the task of dynamic spectrum access based on game theory to mitigate spectrum shortage and improve network utilization in multichannel wireless networks. Usually, the available network bandwidth is limited and divided into several channels, and there exists a need for efficient reuse and adaptive allocation of such channels. During the communication process,
U
users compete with each other for
C
shared channels even without knowing accurate, complete channel state information. In order to avoid collision, traditional methods usually depend on centralized scheduling or message exchange, which are cumbersome and computationally expensive. To deal with this issue, we propose a deep Q-network, based on LSTM and fair channel allocation policy, to learn the dynamic spectrum access rules for network utility maximization. Extensive validation of the proposed approach shows that our scheme yields quite promising results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-022-00709-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2024-02, Vol.17 (1), p.275-282 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2927855378 |
source | Springer Nature |
subjects | Applications of Mathematics Artificial Intelligence Bioinformatics Channels Collision avoidance Control Engineering Game theory Mathematical and Computational Engineering Mechatronics Robotics Special Issue Statistical Physics and Dynamical Systems Wireless networks |
title | A game theory based approach for distributed dynamic spectrum access |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20game%20theory%20based%20approach%20for%20distributed%20dynamic%20spectrum%20access&rft.jtitle=Evolutionary%20intelligence&rft.au=Qu,%20Chongxiao&rft.date=2024-02-01&rft.volume=17&rft.issue=1&rft.spage=275&rft.epage=282&rft.pages=275-282&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-022-00709-y&rft_dat=%3Cproquest_cross%3E2927855378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2452480d4d5ed7d095d5cef96471b750d88c2789ddc7748be65ce8cd79fe8d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927855378&rft_id=info:pmid/&rfr_iscdi=true |