Loading…
Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer
Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State N...
Saved in:
Published in: | Transboundary and emerging diseases 2024-02, Vol.2024 (1) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-b9ff59af412257293797d71a53e5c29300c1305ae3e922a6ea90e08e9bae02f3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Transboundary and emerging diseases |
container_volume | 2024 |
creator | Hewitt, Joshua Wilson-Henjum, Grete Collins, Derek T. Linder, Timothy J. Lenoch, Julianna B. Heale, Jonathon D. Quintanal, Christopher A. Pleszewski, Robert McBride, Dillon S. Bowman, Andrew S. Chandler, Jeffrey C. Shriner, Susan A. Bevins, Sarah N. Kohler, Dennis J. Chipman, Richard B. Gosser, Allen L. Bergman, David L. DeLiberto, Thomas J. Pepin, Kim M. |
description | Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemiological processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring data. |
doi_str_mv | 10.1155/2024/7589509 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928048060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928048060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b9ff59af412257293797d71a53e5c29300c1305ae3e922a6ea90e08e9bae02f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f8CCF0Gjk-xmNzmWtn5gQbBFjyHNztqU7WbdtEj_vSktHjx4mnlfHobhIeSSwR1jQtxz4Nl9IaQSoI5Ij8lcUJZLfvy7F9kpOQthCZCDykWPvExMUwZrWqRTa2pMxq0rceV87T9dLJLRtjErZ0Piq2Q6eJvSoX-nPHFN8rFwa6Qz42oskxFid05OKlMHvDjMPpk9jGfDJzp5fXweDibUclGs6VxVlVCmyhiPmau0UEVZMCNSFDZGAMtSEAZTVJybHI0CBIlqbhB4lfbJ9f5s2_mvDYa1Xrlgsa5Ng34TdMpEmnOQEiJ69Qdd-k3XxOc0V1xCJqOHSN3uKdv5EDqsdNu5lem2moHeidU7sfogNuI3e3zhmtJ8u__pH_KbdI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928048060</pqid></control><display><type>article</type><title>Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><creator>Hewitt, Joshua ; Wilson-Henjum, Grete ; Collins, Derek T. ; Linder, Timothy J. ; Lenoch, Julianna B. ; Heale, Jonathon D. ; Quintanal, Christopher A. ; Pleszewski, Robert ; McBride, Dillon S. ; Bowman, Andrew S. ; Chandler, Jeffrey C. ; Shriner, Susan A. ; Bevins, Sarah N. ; Kohler, Dennis J. ; Chipman, Richard B. ; Gosser, Allen L. ; Bergman, David L. ; DeLiberto, Thomas J. ; Pepin, Kim M.</creator><contributor>Zhai, Shao-Lun ; Shao-Lun Zhai</contributor><creatorcontrib>Hewitt, Joshua ; Wilson-Henjum, Grete ; Collins, Derek T. ; Linder, Timothy J. ; Lenoch, Julianna B. ; Heale, Jonathon D. ; Quintanal, Christopher A. ; Pleszewski, Robert ; McBride, Dillon S. ; Bowman, Andrew S. ; Chandler, Jeffrey C. ; Shriner, Susan A. ; Bevins, Sarah N. ; Kohler, Dennis J. ; Chipman, Richard B. ; Gosser, Allen L. ; Bergman, David L. ; DeLiberto, Thomas J. ; Pepin, Kim M. ; Zhai, Shao-Lun ; Shao-Lun Zhai</creatorcontrib><description>Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemiological processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring data.</description><identifier>ISSN: 1865-1674</identifier><identifier>EISSN: 1865-1682</identifier><identifier>DOI: 10.1155/2024/7589509</identifier><language>eng</language><publisher>Berlin: Hindawi</publisher><subject>Animal and Plant Health Inspection Service ; Animal health ; COVID-19 ; data collection ; Deer ; Epidemiology ; Estimates ; hosts ; human diseases ; Infections ; Mathematical models ; monitoring ; Mortality ; Natural resources ; Odocoileus virginianus ; Outbreaks ; Pandemics ; pathogens ; Random variables ; reproduction ; risk ; Risk assessment ; Risk factors ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Statistical models ; Surveillance ; Viral diseases ; Zoonoses</subject><ispartof>Transboundary and emerging diseases, 2024-02, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Joshua Hewitt et al.</rights><rights>Copyright © 2024 Joshua Hewitt et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-b9ff59af412257293797d71a53e5c29300c1305ae3e922a6ea90e08e9bae02f3</cites><orcidid>0000-0002-3723-2353 ; 0000-0002-3995-8895 ; 0000-0003-0687-0528 ; 0000-0003-0349-7182 ; 0000-0003-3440-0574 ; 0000-0002-4145-678X ; 0000-0002-3318-135X ; 0000-0003-1481-0242 ; 0000-0002-6757-643X ; 0000-0002-4999-6836 ; 0000-0002-0844-7769 ; 0000-0002-7408-3959 ; 0000-0002-2284-8745 ; 0000-0001-6712-505X ; 0000-0002-0738-8453 ; 0000-0002-9931-8312 ; 0000-0003-1115-1472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2928048060/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2928048060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><contributor>Zhai, Shao-Lun</contributor><contributor>Shao-Lun Zhai</contributor><creatorcontrib>Hewitt, Joshua</creatorcontrib><creatorcontrib>Wilson-Henjum, Grete</creatorcontrib><creatorcontrib>Collins, Derek T.</creatorcontrib><creatorcontrib>Linder, Timothy J.</creatorcontrib><creatorcontrib>Lenoch, Julianna B.</creatorcontrib><creatorcontrib>Heale, Jonathon D.</creatorcontrib><creatorcontrib>Quintanal, Christopher A.</creatorcontrib><creatorcontrib>Pleszewski, Robert</creatorcontrib><creatorcontrib>McBride, Dillon S.</creatorcontrib><creatorcontrib>Bowman, Andrew S.</creatorcontrib><creatorcontrib>Chandler, Jeffrey C.</creatorcontrib><creatorcontrib>Shriner, Susan A.</creatorcontrib><creatorcontrib>Bevins, Sarah N.</creatorcontrib><creatorcontrib>Kohler, Dennis J.</creatorcontrib><creatorcontrib>Chipman, Richard B.</creatorcontrib><creatorcontrib>Gosser, Allen L.</creatorcontrib><creatorcontrib>Bergman, David L.</creatorcontrib><creatorcontrib>DeLiberto, Thomas J.</creatorcontrib><creatorcontrib>Pepin, Kim M.</creatorcontrib><title>Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer</title><title>Transboundary and emerging diseases</title><description>Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemiological processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring data.</description><subject>Animal and Plant Health Inspection Service</subject><subject>Animal health</subject><subject>COVID-19</subject><subject>data collection</subject><subject>Deer</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>hosts</subject><subject>human diseases</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>monitoring</subject><subject>Mortality</subject><subject>Natural resources</subject><subject>Odocoileus virginianus</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>pathogens</subject><subject>Random variables</subject><subject>reproduction</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Surveillance</subject><subject>Viral diseases</subject><subject>Zoonoses</subject><issn>1865-1674</issn><issn>1865-1682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f8CCF0Gjk-xmNzmWtn5gQbBFjyHNztqU7WbdtEj_vSktHjx4mnlfHobhIeSSwR1jQtxz4Nl9IaQSoI5Ij8lcUJZLfvy7F9kpOQthCZCDykWPvExMUwZrWqRTa2pMxq0rceV87T9dLJLRtjErZ0Piq2Q6eJvSoX-nPHFN8rFwa6Qz42oskxFid05OKlMHvDjMPpk9jGfDJzp5fXweDibUclGs6VxVlVCmyhiPmau0UEVZMCNSFDZGAMtSEAZTVJybHI0CBIlqbhB4lfbJ9f5s2_mvDYa1Xrlgsa5Ng34TdMpEmnOQEiJ69Qdd-k3XxOc0V1xCJqOHSN3uKdv5EDqsdNu5lem2moHeidU7sfogNuI3e3zhmtJ8u__pH_KbdI8</recordid><startdate>20240210</startdate><enddate>20240210</enddate><creator>Hewitt, Joshua</creator><creator>Wilson-Henjum, Grete</creator><creator>Collins, Derek T.</creator><creator>Linder, Timothy J.</creator><creator>Lenoch, Julianna B.</creator><creator>Heale, Jonathon D.</creator><creator>Quintanal, Christopher A.</creator><creator>Pleszewski, Robert</creator><creator>McBride, Dillon S.</creator><creator>Bowman, Andrew S.</creator><creator>Chandler, Jeffrey C.</creator><creator>Shriner, Susan A.</creator><creator>Bevins, Sarah N.</creator><creator>Kohler, Dennis J.</creator><creator>Chipman, Richard B.</creator><creator>Gosser, Allen L.</creator><creator>Bergman, David L.</creator><creator>DeLiberto, Thomas J.</creator><creator>Pepin, Kim M.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3723-2353</orcidid><orcidid>https://orcid.org/0000-0002-3995-8895</orcidid><orcidid>https://orcid.org/0000-0003-0687-0528</orcidid><orcidid>https://orcid.org/0000-0003-0349-7182</orcidid><orcidid>https://orcid.org/0000-0003-3440-0574</orcidid><orcidid>https://orcid.org/0000-0002-4145-678X</orcidid><orcidid>https://orcid.org/0000-0002-3318-135X</orcidid><orcidid>https://orcid.org/0000-0003-1481-0242</orcidid><orcidid>https://orcid.org/0000-0002-6757-643X</orcidid><orcidid>https://orcid.org/0000-0002-4999-6836</orcidid><orcidid>https://orcid.org/0000-0002-0844-7769</orcidid><orcidid>https://orcid.org/0000-0002-7408-3959</orcidid><orcidid>https://orcid.org/0000-0002-2284-8745</orcidid><orcidid>https://orcid.org/0000-0001-6712-505X</orcidid><orcidid>https://orcid.org/0000-0002-0738-8453</orcidid><orcidid>https://orcid.org/0000-0002-9931-8312</orcidid><orcidid>https://orcid.org/0000-0003-1115-1472</orcidid></search><sort><creationdate>20240210</creationdate><title>Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer</title><author>Hewitt, Joshua ; Wilson-Henjum, Grete ; Collins, Derek T. ; Linder, Timothy J. ; Lenoch, Julianna B. ; Heale, Jonathon D. ; Quintanal, Christopher A. ; Pleszewski, Robert ; McBride, Dillon S. ; Bowman, Andrew S. ; Chandler, Jeffrey C. ; Shriner, Susan A. ; Bevins, Sarah N. ; Kohler, Dennis J. ; Chipman, Richard B. ; Gosser, Allen L. ; Bergman, David L. ; DeLiberto, Thomas J. ; Pepin, Kim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b9ff59af412257293797d71a53e5c29300c1305ae3e922a6ea90e08e9bae02f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal and Plant Health Inspection Service</topic><topic>Animal health</topic><topic>COVID-19</topic><topic>data collection</topic><topic>Deer</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>hosts</topic><topic>human diseases</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>monitoring</topic><topic>Mortality</topic><topic>Natural resources</topic><topic>Odocoileus virginianus</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>pathogens</topic><topic>Random variables</topic><topic>reproduction</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Surveillance</topic><topic>Viral diseases</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewitt, Joshua</creatorcontrib><creatorcontrib>Wilson-Henjum, Grete</creatorcontrib><creatorcontrib>Collins, Derek T.</creatorcontrib><creatorcontrib>Linder, Timothy J.</creatorcontrib><creatorcontrib>Lenoch, Julianna B.</creatorcontrib><creatorcontrib>Heale, Jonathon D.</creatorcontrib><creatorcontrib>Quintanal, Christopher A.</creatorcontrib><creatorcontrib>Pleszewski, Robert</creatorcontrib><creatorcontrib>McBride, Dillon S.</creatorcontrib><creatorcontrib>Bowman, Andrew S.</creatorcontrib><creatorcontrib>Chandler, Jeffrey C.</creatorcontrib><creatorcontrib>Shriner, Susan A.</creatorcontrib><creatorcontrib>Bevins, Sarah N.</creatorcontrib><creatorcontrib>Kohler, Dennis J.</creatorcontrib><creatorcontrib>Chipman, Richard B.</creatorcontrib><creatorcontrib>Gosser, Allen L.</creatorcontrib><creatorcontrib>Bergman, David L.</creatorcontrib><creatorcontrib>DeLiberto, Thomas J.</creatorcontrib><creatorcontrib>Pepin, Kim M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Transboundary and emerging diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewitt, Joshua</au><au>Wilson-Henjum, Grete</au><au>Collins, Derek T.</au><au>Linder, Timothy J.</au><au>Lenoch, Julianna B.</au><au>Heale, Jonathon D.</au><au>Quintanal, Christopher A.</au><au>Pleszewski, Robert</au><au>McBride, Dillon S.</au><au>Bowman, Andrew S.</au><au>Chandler, Jeffrey C.</au><au>Shriner, Susan A.</au><au>Bevins, Sarah N.</au><au>Kohler, Dennis J.</au><au>Chipman, Richard B.</au><au>Gosser, Allen L.</au><au>Bergman, David L.</au><au>DeLiberto, Thomas J.</au><au>Pepin, Kim M.</au><au>Zhai, Shao-Lun</au><au>Shao-Lun Zhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer</atitle><jtitle>Transboundary and emerging diseases</jtitle><date>2024-02-10</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1865-1674</issn><eissn>1865-1682</eissn><abstract>Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemiological processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring data.</abstract><cop>Berlin</cop><pub>Hindawi</pub><doi>10.1155/2024/7589509</doi><orcidid>https://orcid.org/0000-0002-3723-2353</orcidid><orcidid>https://orcid.org/0000-0002-3995-8895</orcidid><orcidid>https://orcid.org/0000-0003-0687-0528</orcidid><orcidid>https://orcid.org/0000-0003-0349-7182</orcidid><orcidid>https://orcid.org/0000-0003-3440-0574</orcidid><orcidid>https://orcid.org/0000-0002-4145-678X</orcidid><orcidid>https://orcid.org/0000-0002-3318-135X</orcidid><orcidid>https://orcid.org/0000-0003-1481-0242</orcidid><orcidid>https://orcid.org/0000-0002-6757-643X</orcidid><orcidid>https://orcid.org/0000-0002-4999-6836</orcidid><orcidid>https://orcid.org/0000-0002-0844-7769</orcidid><orcidid>https://orcid.org/0000-0002-7408-3959</orcidid><orcidid>https://orcid.org/0000-0002-2284-8745</orcidid><orcidid>https://orcid.org/0000-0001-6712-505X</orcidid><orcidid>https://orcid.org/0000-0002-0738-8453</orcidid><orcidid>https://orcid.org/0000-0002-9931-8312</orcidid><orcidid>https://orcid.org/0000-0003-1115-1472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-1674 |
ispartof | Transboundary and emerging diseases, 2024-02, Vol.2024 (1) |
issn | 1865-1674 1865-1682 |
language | eng |
recordid | cdi_proquest_journals_2928048060 |
source | Wiley Online Library; Publicly Available Content Database |
subjects | Animal and Plant Health Inspection Service Animal health COVID-19 data collection Deer Epidemiology Estimates hosts human diseases Infections Mathematical models monitoring Mortality Natural resources Odocoileus virginianus Outbreaks Pandemics pathogens Random variables reproduction risk Risk assessment Risk factors Severe acute respiratory syndrome coronavirus 2 Statistical analysis Statistical models Surveillance Viral diseases Zoonoses |
title | Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landscape-Scale%20Epidemiological%20Dynamics%20of%20SARS-CoV-2%20in%20White-Tailed%20Deer&rft.jtitle=Transboundary%20and%20emerging%20diseases&rft.au=Hewitt,%20Joshua&rft.date=2024-02-10&rft.volume=2024&rft.issue=1&rft.issn=1865-1674&rft.eissn=1865-1682&rft_id=info:doi/10.1155/2024/7589509&rft_dat=%3Cproquest_cross%3E2928048060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-b9ff59af412257293797d71a53e5c29300c1305ae3e922a6ea90e08e9bae02f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928048060&rft_id=info:pmid/&rfr_iscdi=true |