Loading…

Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices

Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that uti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2024-02, Vol.45 (1-2), p.35-65
Main Authors: Elabd, Rania Hamdy, Al-Gburi, Ahmed Jamal Abdullah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3
cites cdi_FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3
container_end_page 65
container_issue 1-2
container_start_page 35
container_title Journal of infrared, millimeter and terahertz waves
container_volume 45
creator Elabd, Rania Hamdy
Al-Gburi, Ahmed Jamal Abdullah
description Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure. This design minimizes mutual coupling (MC) and handles a wide frequency range effectively. The 4-port MIMO antenna is constructed on a Rogers TMM4 substrate, with overall dimensions of 17.76 × 17.76 mm². It incorporates four planar patch antennas positioned at the corners, arranged perpendicularly to each other. Each antenna element is designed for dual-band operation at 28/38 GHz, featuring a rectangular patch with four rectangular slots and a full ground plane. The gap between these patches measures 0.5 λo, and an EBG is included to minimize MC among the MIMO antenna elements efficiently and cost-effectively. Both simulation and measurement results show a substantial reduction in mutual coupling between the array elements, ranging from −25 to −90 dB. Consequently, this enhances the envelope correlation coefficient (ECC) and improves the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). An in-depth time-domain analysis is proposed to confirm the radiation efficiency of the proposed MIMO antenna design. Furthermore, specific absorption rate (SAR) analysis affirms the suitability of this MIMO antenna for 5G cellular devices operating within the target frequency band.
doi_str_mv 10.1007/s10762-023-00959-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928468371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928468371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3</originalsourceid><addsrcrecordid>eNp9kEFPwjAYhhejiYj-AU9NPFfarnTtEVGBBIIROTdd9w1HxjbbToMX_7pTNN48fe_hfd58eaLokpJrSkgy8JQkgmHCYkyIGiosjqIelUJgoYg4_s1SsdPozPstIYJzJXrRx6ptwOFxvWuMDYjJQSzRZPqOOH6oXUCL2WKJRlWAqjJo7YtqgxYQzM4EcIUp8azyTeEgQ3c3E7QKrrWhdYDeivCMVqPHDjXl3hce5bVDwwkaQ1m2pXHoFl4LC_48OslN6eHi5_aj9f3d03iK58vJbDyaYxtTFTAjaZoATRklAIbnUkkQiWKC8CzOmYi5JdYmTArgSZqpJOc0G4LNszRNYZjH_ejqsNu4-qUFH_S2bl33nNdMMcmFjBPatdihZV3tvYNcN67YGbfXlOgv0fogWnei9bdoLTooPkC-K1cbcH_T_1CfaG5_sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928468371</pqid></control><display><type>article</type><title>Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices</title><source>Springer Nature</source><creator>Elabd, Rania Hamdy ; Al-Gburi, Ahmed Jamal Abdullah</creator><creatorcontrib>Elabd, Rania Hamdy ; Al-Gburi, Ahmed Jamal Abdullah</creatorcontrib><description>Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure. This design minimizes mutual coupling (MC) and handles a wide frequency range effectively. The 4-port MIMO antenna is constructed on a Rogers TMM4 substrate, with overall dimensions of 17.76 × 17.76 mm². It incorporates four planar patch antennas positioned at the corners, arranged perpendicularly to each other. Each antenna element is designed for dual-band operation at 28/38 GHz, featuring a rectangular patch with four rectangular slots and a full ground plane. The gap between these patches measures 0.5 λo, and an EBG is included to minimize MC among the MIMO antenna elements efficiently and cost-effectively. Both simulation and measurement results show a substantial reduction in mutual coupling between the array elements, ranging from −25 to −90 dB. Consequently, this enhances the envelope correlation coefficient (ECC) and improves the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). An in-depth time-domain analysis is proposed to confirm the radiation efficiency of the proposed MIMO antenna design. Furthermore, specific absorption rate (SAR) analysis affirms the suitability of this MIMO antenna for 5G cellular devices operating within the target frequency band.</description><identifier>ISSN: 1866-6892</identifier><identifier>EISSN: 1866-6906</identifier><identifier>DOI: 10.1007/s10762-023-00959-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>5G mobile communication ; Antenna design ; Antennas ; Cellular structure ; Classical Electrodynamics ; Correlation coefficients ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Frequencies ; Frequency ranges ; Ground plane ; Instrumentation ; Metamaterials ; Millimeter waves ; MIMO communication ; Mutual coupling ; Patch antennas ; Reflectance ; Substrates ; Time domain analysis</subject><ispartof>Journal of infrared, millimeter and terahertz waves, 2024-02, Vol.45 (1-2), p.35-65</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3</citedby><cites>FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Elabd, Rania Hamdy</creatorcontrib><creatorcontrib>Al-Gburi, Ahmed Jamal Abdullah</creatorcontrib><title>Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices</title><title>Journal of infrared, millimeter and terahertz waves</title><addtitle>J Infrared Milli Terahz Waves</addtitle><description>Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure. This design minimizes mutual coupling (MC) and handles a wide frequency range effectively. The 4-port MIMO antenna is constructed on a Rogers TMM4 substrate, with overall dimensions of 17.76 × 17.76 mm². It incorporates four planar patch antennas positioned at the corners, arranged perpendicularly to each other. Each antenna element is designed for dual-band operation at 28/38 GHz, featuring a rectangular patch with four rectangular slots and a full ground plane. The gap between these patches measures 0.5 λo, and an EBG is included to minimize MC among the MIMO antenna elements efficiently and cost-effectively. Both simulation and measurement results show a substantial reduction in mutual coupling between the array elements, ranging from −25 to −90 dB. Consequently, this enhances the envelope correlation coefficient (ECC) and improves the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). An in-depth time-domain analysis is proposed to confirm the radiation efficiency of the proposed MIMO antenna design. Furthermore, specific absorption rate (SAR) analysis affirms the suitability of this MIMO antenna for 5G cellular devices operating within the target frequency band.</description><subject>5G mobile communication</subject><subject>Antenna design</subject><subject>Antennas</subject><subject>Cellular structure</subject><subject>Classical Electrodynamics</subject><subject>Correlation coefficients</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Ground plane</subject><subject>Instrumentation</subject><subject>Metamaterials</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>Mutual coupling</subject><subject>Patch antennas</subject><subject>Reflectance</subject><subject>Substrates</subject><subject>Time domain analysis</subject><issn>1866-6892</issn><issn>1866-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwjAYhhejiYj-AU9NPFfarnTtEVGBBIIROTdd9w1HxjbbToMX_7pTNN48fe_hfd58eaLokpJrSkgy8JQkgmHCYkyIGiosjqIelUJgoYg4_s1SsdPozPstIYJzJXrRx6ptwOFxvWuMDYjJQSzRZPqOOH6oXUCL2WKJRlWAqjJo7YtqgxYQzM4EcIUp8azyTeEgQ3c3E7QKrrWhdYDeivCMVqPHDjXl3hce5bVDwwkaQ1m2pXHoFl4LC_48OslN6eHi5_aj9f3d03iK58vJbDyaYxtTFTAjaZoATRklAIbnUkkQiWKC8CzOmYi5JdYmTArgSZqpJOc0G4LNszRNYZjH_ejqsNu4-qUFH_S2bl33nNdMMcmFjBPatdihZV3tvYNcN67YGbfXlOgv0fogWnei9bdoLTooPkC-K1cbcH_T_1CfaG5_sQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Elabd, Rania Hamdy</creator><creator>Al-Gburi, Ahmed Jamal Abdullah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices</title><author>Elabd, Rania Hamdy ; Al-Gburi, Ahmed Jamal Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Antenna design</topic><topic>Antennas</topic><topic>Cellular structure</topic><topic>Classical Electrodynamics</topic><topic>Correlation coefficients</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Ground plane</topic><topic>Instrumentation</topic><topic>Metamaterials</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>Mutual coupling</topic><topic>Patch antennas</topic><topic>Reflectance</topic><topic>Substrates</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elabd, Rania Hamdy</creatorcontrib><creatorcontrib>Al-Gburi, Ahmed Jamal Abdullah</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elabd, Rania Hamdy</au><au>Al-Gburi, Ahmed Jamal Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices</atitle><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle><stitle>J Infrared Milli Terahz Waves</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>45</volume><issue>1-2</issue><spage>35</spage><epage>65</epage><pages>35-65</pages><issn>1866-6892</issn><eissn>1866-6906</eissn><abstract>Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure. This design minimizes mutual coupling (MC) and handles a wide frequency range effectively. The 4-port MIMO antenna is constructed on a Rogers TMM4 substrate, with overall dimensions of 17.76 × 17.76 mm². It incorporates four planar patch antennas positioned at the corners, arranged perpendicularly to each other. Each antenna element is designed for dual-band operation at 28/38 GHz, featuring a rectangular patch with four rectangular slots and a full ground plane. The gap between these patches measures 0.5 λo, and an EBG is included to minimize MC among the MIMO antenna elements efficiently and cost-effectively. Both simulation and measurement results show a substantial reduction in mutual coupling between the array elements, ranging from −25 to −90 dB. Consequently, this enhances the envelope correlation coefficient (ECC) and improves the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). An in-depth time-domain analysis is proposed to confirm the radiation efficiency of the proposed MIMO antenna design. Furthermore, specific absorption rate (SAR) analysis affirms the suitability of this MIMO antenna for 5G cellular devices operating within the target frequency band.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10762-023-00959-6</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6892
ispartof Journal of infrared, millimeter and terahertz waves, 2024-02, Vol.45 (1-2), p.35-65
issn 1866-6892
1866-6906
language eng
recordid cdi_proquest_journals_2928468371
source Springer Nature
subjects 5G mobile communication
Antenna design
Antennas
Cellular structure
Classical Electrodynamics
Correlation coefficients
Electrical Engineering
Electronics and Microelectronics
Engineering
Frequencies
Frequency ranges
Ground plane
Instrumentation
Metamaterials
Millimeter waves
MIMO communication
Mutual coupling
Patch antennas
Reflectance
Substrates
Time domain analysis
title Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-Compact%2028/38%20GHz%204-Port%20MIMO%20Antenna%20Using%20Metamaterial-Inspired%20EBG%20Structure%20with%20SAR%20Analysis%20for%205G%20Cellular%20Devices&rft.jtitle=Journal%20of%20infrared,%20millimeter%20and%20terahertz%20waves&rft.au=Elabd,%20Rania%20Hamdy&rft.date=2024-02-01&rft.volume=45&rft.issue=1-2&rft.spage=35&rft.epage=65&rft.pages=35-65&rft.issn=1866-6892&rft.eissn=1866-6906&rft_id=info:doi/10.1007/s10762-023-00959-6&rft_dat=%3Cproquest_cross%3E2928468371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-20bb7e1b210eea4f898e6792604d3f2634c0cc7286e47bd97f41d5ecfdbbbe5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928468371&rft_id=info:pmid/&rfr_iscdi=true