Loading…
A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces
We prove that a condition of boundedness of the maximal function of a singular integral operator, that is known to be sufficient for the continuity of a corresponding integral operator in Hölder spaces, is actually also necessary in case the action of the integral operator does not decrease the regu...
Saved in:
Published in: | Mediterranean journal of mathematics 2024-03, Vol.21 (3), Article 47 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-fb598890d660be8bfdb812cb404efc0236fbdce63f3588e8ef3f063961ebc33 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 21 |
creator | Lanza de Cristoforis, Massimo |
description | We prove that a condition of boundedness of the maximal function of a singular integral operator, that is known to be sufficient for the continuity of a corresponding integral operator in Hölder spaces, is actually also necessary in case the action of the integral operator does not decrease the regularity of a function. We do so in the frame of metric measured spaces with a measure satisfying certain growth conditions that include nondoubling measures. Then we present an application to the case of an integral operator defined on a compact differentiable manifold. |
doi_str_mv | 10.1007/s00009-023-02562-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928612659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928612659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-fb598890d660be8bfdb812cb404efc0236fbdce63f3588e8ef3f063961ebc33</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWAf8F-MsqwpoRUUXZW85yTikCk6wnUUvxgW4GIYg2GHZGi--92bmIXRJyTUl5PYmkHSKjDCeXi5ZJo7QjEpJslzk4vj3L-QpOgthTwgrKGcz1CzwE1QQgvEHvOxd3ca2dzhdg3eta8bOePwI3kGHbe9xfIEvLLZubOMB9xYbh9cuQuNNh7cDeBMT1jq8-njvavB4N5jkf45OrOkCXPzUOdrd3z0vV9lm-7BeLjZZxamImS3zQqmC1GncElRp61JRVpWCCLBVWk_asq5AcstzpUCB5ZZIXkgKZcX5HF1NroPv30YIUe_70bvUULOCKUmZzItEsYmqfB-CB6sH376mADQl-itOPcWpUz_9HacWScQnUUiwa8D_Wf-j-gRmjXkW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928612659</pqid></control><display><type>article</type><title>A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces</title><source>Springer Link</source><creator>Lanza de Cristoforis, Massimo</creator><creatorcontrib>Lanza de Cristoforis, Massimo</creatorcontrib><description>We prove that a condition of boundedness of the maximal function of a singular integral operator, that is known to be sufficient for the continuity of a corresponding integral operator in Hölder spaces, is actually also necessary in case the action of the integral operator does not decrease the regularity of a function. We do so in the frame of metric measured spaces with a measure satisfying certain growth conditions that include nondoubling measures. Then we present an application to the case of an integral operator defined on a compact differentiable manifold.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-023-02562-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Continuity ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Mediterranean journal of mathematics, 2024-03, Vol.21 (3), Article 47</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-fb598890d660be8bfdb812cb404efc0236fbdce63f3588e8ef3f063961ebc33</cites><orcidid>0000-0001-6886-4647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lanza de Cristoforis, Massimo</creatorcontrib><title>A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We prove that a condition of boundedness of the maximal function of a singular integral operator, that is known to be sufficient for the continuity of a corresponding integral operator in Hölder spaces, is actually also necessary in case the action of the integral operator does not decrease the regularity of a function. We do so in the frame of metric measured spaces with a measure satisfying certain growth conditions that include nondoubling measures. Then we present an application to the case of an integral operator defined on a compact differentiable manifold.</description><subject>Continuity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWAf8F-MsqwpoRUUXZW85yTikCk6wnUUvxgW4GIYg2GHZGi--92bmIXRJyTUl5PYmkHSKjDCeXi5ZJo7QjEpJslzk4vj3L-QpOgthTwgrKGcz1CzwE1QQgvEHvOxd3ca2dzhdg3eta8bOePwI3kGHbe9xfIEvLLZubOMB9xYbh9cuQuNNh7cDeBMT1jq8-njvavB4N5jkf45OrOkCXPzUOdrd3z0vV9lm-7BeLjZZxamImS3zQqmC1GncElRp61JRVpWCCLBVWk_asq5AcstzpUCB5ZZIXkgKZcX5HF1NroPv30YIUe_70bvUULOCKUmZzItEsYmqfB-CB6sH376mADQl-itOPcWpUz_9HacWScQnUUiwa8D_Wf-j-gRmjXkW</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Lanza de Cristoforis, Massimo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6886-4647</orcidid></search><sort><creationdate>20240301</creationdate><title>A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces</title><author>Lanza de Cristoforis, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-fb598890d660be8bfdb812cb404efc0236fbdce63f3588e8ef3f063961ebc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Continuity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanza de Cristoforis, Massimo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanza de Cristoforis, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><artnum>47</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We prove that a condition of boundedness of the maximal function of a singular integral operator, that is known to be sufficient for the continuity of a corresponding integral operator in Hölder spaces, is actually also necessary in case the action of the integral operator does not decrease the regularity of a function. We do so in the frame of metric measured spaces with a measure satisfying certain growth conditions that include nondoubling measures. Then we present an application to the case of an integral operator defined on a compact differentiable manifold.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-023-02562-4</doi><orcidid>https://orcid.org/0000-0001-6886-4647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2024-03, Vol.21 (3), Article 47 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2928612659 |
source | Springer Link |
subjects | Continuity Mathematics Mathematics and Statistics Operators (mathematics) |
title | A Necessary Condition on a Singular Kernel for the Continuity of an Integral Operator in Hölder Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Necessary%20Condition%20on%20a%20Singular%20Kernel%20for%20the%20Continuity%20of%20an%20Integral%20Operator%20in%20H%C3%B6lder%20Spaces&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Lanza%20de%20Cristoforis,%20Massimo&rft.date=2024-03-01&rft.volume=21&rft.issue=3&rft.artnum=47&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-023-02562-4&rft_dat=%3Cproquest_cross%3E2928612659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-fb598890d660be8bfdb812cb404efc0236fbdce63f3588e8ef3f063961ebc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928612659&rft_id=info:pmid/&rfr_iscdi=true |