Loading…
Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks
This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose,...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borrás, M D Bravo, J C Montaño, J C |
description | This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals. |
doi_str_mv | 10.48550/arxiv.2402.11668 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928716082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928716082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTNx99dyl1fsB0IgMvR5qmkFnbmaSbP99WvTpweHjOIeSKs1yiUuzGhG9_zEEyyDnXGs_IDITgGUqAC7KIcc8YA12AUmJG3u98TEOoTGcdfTPJ97TpA90ckv80LX0e2uSz1dF1iZatidE33k5UR31HX_uTC3QyBF8Nv-2LS6c-fMRLct6YNrrFf87J9n61LR-z9ebhqbxdZ0YBZOOvAri0zRLQcqhq1M6hMQZR8Zo10uqlUlwo6RRaA6oWtWIWRpwhQi3m5PpPewj91-Bi2u37IXTj4m6CCq4ZgvgBtklSyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928716082</pqid></control><display><type>article</type><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><source>Publicly Available Content Database</source><creator>Borrás, M D ; Bravo, J C ; Montaño, J C</creator><creatorcontrib>Borrás, M D ; Bravo, J C ; Montaño, J C</creatorcontrib><description>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.11668</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Electric power distribution ; Power sources ; Support vector machines</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2928716082?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Borrás, M D</creatorcontrib><creatorcontrib>Bravo, J C</creatorcontrib><creatorcontrib>Montaño, J C</creatorcontrib><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><title>arXiv.org</title><description>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</description><subject>Classification</subject><subject>Electric power distribution</subject><subject>Power sources</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTNx99dyl1fsB0IgMvR5qmkFnbmaSbP99WvTpweHjOIeSKs1yiUuzGhG9_zEEyyDnXGs_IDITgGUqAC7KIcc8YA12AUmJG3u98TEOoTGcdfTPJ97TpA90ckv80LX0e2uSz1dF1iZatidE33k5UR31HX_uTC3QyBF8Nv-2LS6c-fMRLct6YNrrFf87J9n61LR-z9ebhqbxdZ0YBZOOvAri0zRLQcqhq1M6hMQZR8Zo10uqlUlwo6RRaA6oWtWIWRpwhQi3m5PpPewj91-Bi2u37IXTj4m6CCq4ZgvgBtklSyg</recordid><startdate>20240218</startdate><enddate>20240218</enddate><creator>Borrás, M D</creator><creator>Bravo, J C</creator><creator>Montaño, J C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240218</creationdate><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><author>Borrás, M D ; Bravo, J C ; Montaño, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Electric power distribution</topic><topic>Power sources</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrás, M D</creatorcontrib><creatorcontrib>Bravo, J C</creatorcontrib><creatorcontrib>Montaño, J C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borrás, M D</au><au>Bravo, J C</au><au>Montaño, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-02-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.11668</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2928716082 |
source | Publicly Available Content Database |
subjects | Classification Electric power distribution Power sources Support vector machines |
title | Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disturbance%20Ratio%20for%20Optimal%20Multi-Event%20Classification%20in%20Power%20Distribution%20Networks&rft.jtitle=arXiv.org&rft.au=Borr%C3%A1s,%20M%20D&rft.date=2024-02-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.11668&rft_dat=%3Cproquest%3E2928716082%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928716082&rft_id=info:pmid/&rfr_iscdi=true |