Loading…

Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks

This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Borrás, M D, Bravo, J C, Montaño, J C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borrás, M D
Bravo, J C
Montaño, J C
description This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.
doi_str_mv 10.48550/arxiv.2402.11668
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928716082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928716082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTNx99dyl1fsB0IgMvR5qmkFnbmaSbP99WvTpweHjOIeSKs1yiUuzGhG9_zEEyyDnXGs_IDITgGUqAC7KIcc8YA12AUmJG3u98TEOoTGcdfTPJ97TpA90ckv80LX0e2uSz1dF1iZatidE33k5UR31HX_uTC3QyBF8Nv-2LS6c-fMRLct6YNrrFf87J9n61LR-z9ebhqbxdZ0YBZOOvAri0zRLQcqhq1M6hMQZR8Zo10uqlUlwo6RRaA6oWtWIWRpwhQi3m5PpPewj91-Bi2u37IXTj4m6CCq4ZgvgBtklSyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928716082</pqid></control><display><type>article</type><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><source>Publicly Available Content Database</source><creator>Borrás, M D ; Bravo, J C ; Montaño, J C</creator><creatorcontrib>Borrás, M D ; Bravo, J C ; Montaño, J C</creatorcontrib><description>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.11668</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Electric power distribution ; Power sources ; Support vector machines</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2928716082?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Borrás, M D</creatorcontrib><creatorcontrib>Bravo, J C</creatorcontrib><creatorcontrib>Montaño, J C</creatorcontrib><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><title>arXiv.org</title><description>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</description><subject>Classification</subject><subject>Electric power distribution</subject><subject>Power sources</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBr1uTNx99dyl1fsB0IgMvR5qmkFnbmaSbP99WvTpweHjOIeSKs1yiUuzGhG9_zEEyyDnXGs_IDITgGUqAC7KIcc8YA12AUmJG3u98TEOoTGcdfTPJ97TpA90ckv80LX0e2uSz1dF1iZatidE33k5UR31HX_uTC3QyBF8Nv-2LS6c-fMRLct6YNrrFf87J9n61LR-z9ebhqbxdZ0YBZOOvAri0zRLQcqhq1M6hMQZR8Zo10uqlUlwo6RRaA6oWtWIWRpwhQi3m5PpPewj91-Bi2u37IXTj4m6CCq4ZgvgBtklSyg</recordid><startdate>20240218</startdate><enddate>20240218</enddate><creator>Borrás, M D</creator><creator>Bravo, J C</creator><creator>Montaño, J C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240218</creationdate><title>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</title><author>Borrás, M D ; Bravo, J C ; Montaño, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Electric power distribution</topic><topic>Power sources</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrás, M D</creatorcontrib><creatorcontrib>Bravo, J C</creatorcontrib><creatorcontrib>Montaño, J C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borrás, M D</au><au>Bravo, J C</au><au>Montaño, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-02-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents an effective approach to identify power quality events based on IEEE Std 1159-2009 caused by intermittent power sources like those of renewable energy. An efficient characterization of these disturbances is granted by the use of two useful wavelet based indices. For this purpose, a wavelet-based Global Disturbance Ratio index (GDR), defined through its instantaneous precursor (Instantaneous Transient Disturbance index ITD(t)), is used in power distribution networks (PDN) under steady-state and/or transient conditions. An intelligent disturbance classification is done using a Support Vector Machine (SVM) with a minimum input vector based on the GDR index. The effectiveness of the proposed technique is validated using a real-time experimental system with single events and multi-events signals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.11668</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928716082
source Publicly Available Content Database
subjects Classification
Electric power distribution
Power sources
Support vector machines
title Disturbance Ratio for Optimal Multi-Event Classification in Power Distribution Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disturbance%20Ratio%20for%20Optimal%20Multi-Event%20Classification%20in%20Power%20Distribution%20Networks&rft.jtitle=arXiv.org&rft.au=Borr%C3%A1s,%20M%20D&rft.date=2024-02-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.11668&rft_dat=%3Cproquest%3E2928716082%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-3317214cf928c12bd86ee8aaa8851d0f4c69551354e58ca25d3d50c29280882d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928716082&rft_id=info:pmid/&rfr_iscdi=true