Loading…
Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control
In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the whe...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2024-02, Vol.29 (1), p.224-236 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 236 |
container_issue | 1 |
container_start_page | 224 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Dong, Peng Li, Junqing Guo, Wei Wang, Shuhan Xu, Xiangyang Mao, Feihong Liu, Yi |
description | In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs. |
doi_str_mv | 10.1109/TMECH.2023.3272980 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929193380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129823</ieee_id><sourcerecordid>2929193380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIlMIPIA6WOKd4yXosoZRKrXopEjfLSSbUVWoH2y3i73FJD5xmpLfMvIfQPSUTSknxtFnNyrcJI4xPOMtYkZMLNKJFTCNC44_LsJOcR3HMk2t049yOEBJTQkdoOwdp3Va1Hq-PYDvZ49ZYvDp0XjkPPX4x33rATYunB2_20qsab6zUbq-cU0Y7_CwdNNhovPBgA34EvAy-WulPXBrtrelu0VUrOwd35zlG76-zTfkWLdfzRTldRjWLMx9lJAUePqvyqiGygSRrSZLXTZJmjOeyggLyNAUJNASoJMRNm2Qyq7IQKJUc-Bg9Dr69NV8HcF7szMHqcFKwghW04DwngcUGVm2NcxZa0Vu1l_ZHUCJOjYq_RsWpUXFuNIgeBpECgH8CGlDG-S9nLXPj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929193380</pqid></control><display><type>article</type><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</creator><creatorcontrib>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</creatorcontrib><description>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3272980</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automated calibration ; Automatic control ; automatic transmission ; Automatic transmissions ; Calibration ; Clutches ; Dynamic response ; Engines ; Friction ; Gears ; gearshift overlap ; Iterative learning control ; iterative learning control (ILC) ; Learning ; multistep downshift ; Shafts ; Torque ; Vehicle dynamics</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-02, Vol.29 (1), p.224-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-6679-1525 ; 0000-0003-2605-4579 ; 0000-0003-2792-4492 ; 0000-0002-3713-0234 ; 0000-0002-2169-8570 ; 0009-0009-9814-2341 ; 0000-0001-9869-9507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129823$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Li, Junqing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Shuhan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Mao, Feihong</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</description><subject>Automated calibration</subject><subject>Automatic control</subject><subject>automatic transmission</subject><subject>Automatic transmissions</subject><subject>Calibration</subject><subject>Clutches</subject><subject>Dynamic response</subject><subject>Engines</subject><subject>Friction</subject><subject>Gears</subject><subject>gearshift overlap</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Learning</subject><subject>multistep downshift</subject><subject>Shafts</subject><subject>Torque</subject><subject>Vehicle dynamics</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMlOwzAQtRBIlMIPIA6WOKd4yXosoZRKrXopEjfLSSbUVWoH2y3i73FJD5xmpLfMvIfQPSUTSknxtFnNyrcJI4xPOMtYkZMLNKJFTCNC44_LsJOcR3HMk2t049yOEBJTQkdoOwdp3Va1Hq-PYDvZ49ZYvDp0XjkPPX4x33rATYunB2_20qsab6zUbq-cU0Y7_CwdNNhovPBgA34EvAy-WulPXBrtrelu0VUrOwd35zlG76-zTfkWLdfzRTldRjWLMx9lJAUePqvyqiGygSRrSZLXTZJmjOeyggLyNAUJNASoJMRNm2Qyq7IQKJUc-Bg9Dr69NV8HcF7szMHqcFKwghW04DwngcUGVm2NcxZa0Vu1l_ZHUCJOjYq_RsWpUXFuNIgeBpECgH8CGlDG-S9nLXPj</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dong, Peng</creator><creator>Li, Junqing</creator><creator>Guo, Wei</creator><creator>Wang, Shuhan</creator><creator>Xu, Xiangyang</creator><creator>Mao, Feihong</creator><creator>Liu, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-6679-1525</orcidid><orcidid>https://orcid.org/0000-0003-2605-4579</orcidid><orcidid>https://orcid.org/0000-0003-2792-4492</orcidid><orcidid>https://orcid.org/0000-0002-3713-0234</orcidid><orcidid>https://orcid.org/0000-0002-2169-8570</orcidid><orcidid>https://orcid.org/0009-0009-9814-2341</orcidid><orcidid>https://orcid.org/0000-0001-9869-9507</orcidid></search><sort><creationdate>20240201</creationdate><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><author>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated calibration</topic><topic>Automatic control</topic><topic>automatic transmission</topic><topic>Automatic transmissions</topic><topic>Calibration</topic><topic>Clutches</topic><topic>Dynamic response</topic><topic>Engines</topic><topic>Friction</topic><topic>Gears</topic><topic>gearshift overlap</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Learning</topic><topic>multistep downshift</topic><topic>Shafts</topic><topic>Torque</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Li, Junqing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Shuhan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Mao, Feihong</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Peng</au><au>Li, Junqing</au><au>Guo, Wei</au><au>Wang, Shuhan</au><au>Xu, Xiangyang</au><au>Mao, Feihong</au><au>Liu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>224</spage><epage>236</epage><pages>224-236</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3272980</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-6679-1525</orcidid><orcidid>https://orcid.org/0000-0003-2605-4579</orcidid><orcidid>https://orcid.org/0000-0003-2792-4492</orcidid><orcidid>https://orcid.org/0000-0002-3713-0234</orcidid><orcidid>https://orcid.org/0000-0002-2169-8570</orcidid><orcidid>https://orcid.org/0009-0009-9814-2341</orcidid><orcidid>https://orcid.org/0000-0001-9869-9507</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-02, Vol.29 (1), p.224-236 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2929193380 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Automated calibration Automatic control automatic transmission Automatic transmissions Calibration Clutches Dynamic response Engines Friction Gears gearshift overlap Iterative learning control iterative learning control (ILC) Learning multistep downshift Shafts Torque Vehicle dynamics |
title | Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gearshift%20Overlap%20for%20Multistep%20Downshift%20of%20Automatic%20Transmissions%20Based%20on%20Iterative%20Learning%20Control&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Dong,%20Peng&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=224&rft.epage=236&rft.pages=224-236&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3272980&rft_dat=%3Cproquest_cross%3E2929193380%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929193380&rft_id=info:pmid/&rft_ieee_id=10129823&rfr_iscdi=true |