Loading…

Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control

In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the whe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2024-02, Vol.29 (1), p.224-236
Main Authors: Dong, Peng, Li, Junqing, Guo, Wei, Wang, Shuhan, Xu, Xiangyang, Mao, Feihong, Liu, Yi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 236
container_issue 1
container_start_page 224
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Dong, Peng
Li, Junqing
Guo, Wei
Wang, Shuhan
Xu, Xiangyang
Mao, Feihong
Liu, Yi
description In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.
doi_str_mv 10.1109/TMECH.2023.3272980
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929193380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129823</ieee_id><sourcerecordid>2929193380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIlMIPIA6WOKd4yXosoZRKrXopEjfLSSbUVWoH2y3i73FJD5xmpLfMvIfQPSUTSknxtFnNyrcJI4xPOMtYkZMLNKJFTCNC44_LsJOcR3HMk2t049yOEBJTQkdoOwdp3Va1Hq-PYDvZ49ZYvDp0XjkPPX4x33rATYunB2_20qsab6zUbq-cU0Y7_CwdNNhovPBgA34EvAy-WulPXBrtrelu0VUrOwd35zlG76-zTfkWLdfzRTldRjWLMx9lJAUePqvyqiGygSRrSZLXTZJmjOeyggLyNAUJNASoJMRNm2Qyq7IQKJUc-Bg9Dr69NV8HcF7szMHqcFKwghW04DwngcUGVm2NcxZa0Vu1l_ZHUCJOjYq_RsWpUXFuNIgeBpECgH8CGlDG-S9nLXPj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929193380</pqid></control><display><type>article</type><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</creator><creatorcontrib>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</creatorcontrib><description>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3272980</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automated calibration ; Automatic control ; automatic transmission ; Automatic transmissions ; Calibration ; Clutches ; Dynamic response ; Engines ; Friction ; Gears ; gearshift overlap ; Iterative learning control ; iterative learning control (ILC) ; Learning ; multistep downshift ; Shafts ; Torque ; Vehicle dynamics</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-02, Vol.29 (1), p.224-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-6679-1525 ; 0000-0003-2605-4579 ; 0000-0003-2792-4492 ; 0000-0002-3713-0234 ; 0000-0002-2169-8570 ; 0009-0009-9814-2341 ; 0000-0001-9869-9507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129823$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Li, Junqing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Shuhan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Mao, Feihong</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</description><subject>Automated calibration</subject><subject>Automatic control</subject><subject>automatic transmission</subject><subject>Automatic transmissions</subject><subject>Calibration</subject><subject>Clutches</subject><subject>Dynamic response</subject><subject>Engines</subject><subject>Friction</subject><subject>Gears</subject><subject>gearshift overlap</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Learning</subject><subject>multistep downshift</subject><subject>Shafts</subject><subject>Torque</subject><subject>Vehicle dynamics</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMlOwzAQtRBIlMIPIA6WOKd4yXosoZRKrXopEjfLSSbUVWoH2y3i73FJD5xmpLfMvIfQPSUTSknxtFnNyrcJI4xPOMtYkZMLNKJFTCNC44_LsJOcR3HMk2t049yOEBJTQkdoOwdp3Va1Hq-PYDvZ49ZYvDp0XjkPPX4x33rATYunB2_20qsab6zUbq-cU0Y7_CwdNNhovPBgA34EvAy-WulPXBrtrelu0VUrOwd35zlG76-zTfkWLdfzRTldRjWLMx9lJAUePqvyqiGygSRrSZLXTZJmjOeyggLyNAUJNASoJMRNm2Qyq7IQKJUc-Bg9Dr69NV8HcF7szMHqcFKwghW04DwngcUGVm2NcxZa0Vu1l_ZHUCJOjYq_RsWpUXFuNIgeBpECgH8CGlDG-S9nLXPj</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dong, Peng</creator><creator>Li, Junqing</creator><creator>Guo, Wei</creator><creator>Wang, Shuhan</creator><creator>Xu, Xiangyang</creator><creator>Mao, Feihong</creator><creator>Liu, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-6679-1525</orcidid><orcidid>https://orcid.org/0000-0003-2605-4579</orcidid><orcidid>https://orcid.org/0000-0003-2792-4492</orcidid><orcidid>https://orcid.org/0000-0002-3713-0234</orcidid><orcidid>https://orcid.org/0000-0002-2169-8570</orcidid><orcidid>https://orcid.org/0009-0009-9814-2341</orcidid><orcidid>https://orcid.org/0000-0001-9869-9507</orcidid></search><sort><creationdate>20240201</creationdate><title>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</title><author>Dong, Peng ; Li, Junqing ; Guo, Wei ; Wang, Shuhan ; Xu, Xiangyang ; Mao, Feihong ; Liu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated calibration</topic><topic>Automatic control</topic><topic>automatic transmission</topic><topic>Automatic transmissions</topic><topic>Calibration</topic><topic>Clutches</topic><topic>Dynamic response</topic><topic>Engines</topic><topic>Friction</topic><topic>Gears</topic><topic>gearshift overlap</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Learning</topic><topic>multistep downshift</topic><topic>Shafts</topic><topic>Torque</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Li, Junqing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Shuhan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Mao, Feihong</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Peng</au><au>Li, Junqing</au><au>Guo, Wei</au><au>Wang, Shuhan</au><au>Xu, Xiangyang</au><au>Mao, Feihong</au><au>Liu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>224</spage><epage>236</epage><pages>224-236</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In order to improve the dynamic response of vehicles to sudden acceleration or climbing requests of drivers, automatic transmissions generally perform multistep downshift to provide more wheel torque. The shift response is crucial for vehicle drivability. However, sequential downshift delays the wheel torque response. Existing downshift with more than two shifting elements (SE) obtains all clutches' control parameters from scratch and, consequently, requires a large calibration effort. To address this issue, this article overlaps two single well-calibrated clutch-to-clutch shifts instead of calibrating all clutches. A factor for determining the overlap degree of two single shifts is defined, and the influence of different overlap factors on shift jerk is evaluated. Iterative learning control (ILC) including its tuning guideline is devised to reduce the shift jerk. The gearshift overlap strategy and ILC are validated through simulations and vehicle tests of 8-4-3 power-on downshift, showing a significant shift time reduction without sacrificing comfort. This work fills the gap for control and automated calibration of gearshift with more than two SEs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3272980</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-6679-1525</orcidid><orcidid>https://orcid.org/0000-0003-2605-4579</orcidid><orcidid>https://orcid.org/0000-0003-2792-4492</orcidid><orcidid>https://orcid.org/0000-0002-3713-0234</orcidid><orcidid>https://orcid.org/0000-0002-2169-8570</orcidid><orcidid>https://orcid.org/0009-0009-9814-2341</orcidid><orcidid>https://orcid.org/0000-0001-9869-9507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-02, Vol.29 (1), p.224-236
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2929193380
source IEEE Electronic Library (IEL) Journals
subjects Automated calibration
Automatic control
automatic transmission
Automatic transmissions
Calibration
Clutches
Dynamic response
Engines
Friction
Gears
gearshift overlap
Iterative learning control
iterative learning control (ILC)
Learning
multistep downshift
Shafts
Torque
Vehicle dynamics
title Gearshift Overlap for Multistep Downshift of Automatic Transmissions Based on Iterative Learning Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gearshift%20Overlap%20for%20Multistep%20Downshift%20of%20Automatic%20Transmissions%20Based%20on%20Iterative%20Learning%20Control&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Dong,%20Peng&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=224&rft.epage=236&rft.pages=224-236&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3272980&rft_dat=%3Cproquest_cross%3E2929193380%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-706e3101b8bd0ade57f058cd567238abe9e866eae1041bae4df57a7b70046a3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929193380&rft_id=info:pmid/&rft_ieee_id=10129823&rfr_iscdi=true