Loading…
Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection
As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness....
Saved in:
Published in: | IEEE transactions on smart grid 2024-03, Vol.15 (2), p.2203-2213 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2213 |
container_issue | 2 |
container_start_page | 2203 |
container_title | IEEE transactions on smart grid |
container_volume | 15 |
creator | Pang, Haolin He, Kai Fu, Youcai Liu, Jia-Nan Liu, Xueqiao Tan, Wuzheng |
description | As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness. |
doi_str_mv | 10.1109/TSG.2023.3316730 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2929231198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10254595</ieee_id><sourcerecordid>2929231198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYnQOHSJw7kjjtmuO0jYE0xGFDHEOauiXTaEeaHvj3pNqEsA_-0GNbfgm55WzKOVMPu-16KpiAKQDPZsAuyIgrqRJgGb_8y1O4JpOu27NoAJAJNSIfq8YUB9fUdFVVzjpsAjVNSV_MIVZt39Et2t4jXZpg6LyuPdYmuLahrqHbL-MDXXtX0ncXPumjOXRncokB7cDdkKtqaE_OcUzeHle7xVOyeV0_L-abxAqZhgQyKCSmucVSFiJTkOYFMlXOcsnLgmOFBRMVk7MMkTHFAcrMcpSCgzCWlTAm96e9R99-99gFvW9738STWqjowLnKI8VOlPVt13ms9NG7-MWP5kwPUuoopR6k1Gcp48jdacQh4j9cpDJVKfwCQ5NuNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929231198</pqid></control><display><type>article</type><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</creator><creatorcontrib>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</creatorcontrib><description>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3316730</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computational modeling ; Data aggregation ; Data management ; Data privacy ; Edge computing ; Electric power grids ; Electricity distribution ; false data detection ; malicious secure ; Privacy ; privacy-preserving ; Robustness ; Smart grid ; Smart grids ; Smart meters ; Use statistics</subject><ispartof>IEEE transactions on smart grid, 2024-03, Vol.15 (2), p.2203-2213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4430-8408 ; 0000-0003-3140-2320 ; 0009-0005-7823-8064 ; 0000-0002-8838-6248 ; 0009-0008-5472-0739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10254595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pang, Haolin</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Fu, Youcai</creatorcontrib><creatorcontrib>Liu, Jia-Nan</creatorcontrib><creatorcontrib>Liu, Xueqiao</creatorcontrib><creatorcontrib>Tan, Wuzheng</creatorcontrib><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data aggregation</subject><subject>Data management</subject><subject>Data privacy</subject><subject>Edge computing</subject><subject>Electric power grids</subject><subject>Electricity distribution</subject><subject>false data detection</subject><subject>malicious secure</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Robustness</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Smart meters</subject><subject>Use statistics</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEtPYnQOHSJw7kjjtmuO0jYE0xGFDHEOauiXTaEeaHvj3pNqEsA_-0GNbfgm55WzKOVMPu-16KpiAKQDPZsAuyIgrqRJgGb_8y1O4JpOu27NoAJAJNSIfq8YUB9fUdFVVzjpsAjVNSV_MIVZt39Et2t4jXZpg6LyuPdYmuLahrqHbL-MDXXtX0ncXPumjOXRncokB7cDdkKtqaE_OcUzeHle7xVOyeV0_L-abxAqZhgQyKCSmucVSFiJTkOYFMlXOcsnLgmOFBRMVk7MMkTHFAcrMcpSCgzCWlTAm96e9R99-99gFvW9738STWqjowLnKI8VOlPVt13ms9NG7-MWP5kwPUuoopR6k1Gcp48jdacQh4j9cpDJVKfwCQ5NuNw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Pang, Haolin</creator><creator>He, Kai</creator><creator>Fu, Youcai</creator><creator>Liu, Jia-Nan</creator><creator>Liu, Xueqiao</creator><creator>Tan, Wuzheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4430-8408</orcidid><orcidid>https://orcid.org/0000-0003-3140-2320</orcidid><orcidid>https://orcid.org/0009-0005-7823-8064</orcidid><orcidid>https://orcid.org/0000-0002-8838-6248</orcidid><orcidid>https://orcid.org/0009-0008-5472-0739</orcidid></search><sort><creationdate>20240301</creationdate><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><author>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data aggregation</topic><topic>Data management</topic><topic>Data privacy</topic><topic>Edge computing</topic><topic>Electric power grids</topic><topic>Electricity distribution</topic><topic>false data detection</topic><topic>malicious secure</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Robustness</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Smart meters</topic><topic>Use statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Haolin</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Fu, Youcai</creatorcontrib><creatorcontrib>Liu, Jia-Nan</creatorcontrib><creatorcontrib>Liu, Xueqiao</creatorcontrib><creatorcontrib>Tan, Wuzheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Haolin</au><au>He, Kai</au><au>Fu, Youcai</au><au>Liu, Jia-Nan</au><au>Liu, Xueqiao</au><au>Tan, Wuzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><spage>2203</spage><epage>2213</epage><pages>2203-2213</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3316730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4430-8408</orcidid><orcidid>https://orcid.org/0000-0003-3140-2320</orcidid><orcidid>https://orcid.org/0009-0005-7823-8064</orcidid><orcidid>https://orcid.org/0000-0002-8838-6248</orcidid><orcidid>https://orcid.org/0009-0008-5472-0739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2024-03, Vol.15 (2), p.2203-2213 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2929231198 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cloud computing Computational modeling Data aggregation Data management Data privacy Edge computing Electric power grids Electricity distribution false data detection malicious secure Privacy privacy-preserving Robustness Smart grid Smart grids Smart meters Use statistics |
title | Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Efficient%20and%20Malicious%20Secure%20Data%20Aggregation%20in%20Smart%20Grid%20With%20False%20Data%20Detection&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Pang,%20Haolin&rft.date=2024-03-01&rft.volume=15&rft.issue=2&rft.spage=2203&rft.epage=2213&rft.pages=2203-2213&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3316730&rft_dat=%3Cproquest_ieee_%3E2929231198%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929231198&rft_id=info:pmid/&rft_ieee_id=10254595&rfr_iscdi=true |