Loading…

Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection

As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2024-03, Vol.15 (2), p.2203-2213
Main Authors: Pang, Haolin, He, Kai, Fu, Youcai, Liu, Jia-Nan, Liu, Xueqiao, Tan, Wuzheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2213
container_issue 2
container_start_page 2203
container_title IEEE transactions on smart grid
container_volume 15
creator Pang, Haolin
He, Kai
Fu, Youcai
Liu, Jia-Nan
Liu, Xueqiao
Tan, Wuzheng
description As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.
doi_str_mv 10.1109/TSG.2023.3316730
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2929231198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10254595</ieee_id><sourcerecordid>2929231198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYnQOHSJw7kjjtmuO0jYE0xGFDHEOauiXTaEeaHvj3pNqEsA_-0GNbfgm55WzKOVMPu-16KpiAKQDPZsAuyIgrqRJgGb_8y1O4JpOu27NoAJAJNSIfq8YUB9fUdFVVzjpsAjVNSV_MIVZt39Et2t4jXZpg6LyuPdYmuLahrqHbL-MDXXtX0ncXPumjOXRncokB7cDdkKtqaE_OcUzeHle7xVOyeV0_L-abxAqZhgQyKCSmucVSFiJTkOYFMlXOcsnLgmOFBRMVk7MMkTHFAcrMcpSCgzCWlTAm96e9R99-99gFvW9738STWqjowLnKI8VOlPVt13ms9NG7-MWP5kwPUuoopR6k1Gcp48jdacQh4j9cpDJVKfwCQ5NuNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929231198</pqid></control><display><type>article</type><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</creator><creatorcontrib>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</creatorcontrib><description>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3316730</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computational modeling ; Data aggregation ; Data management ; Data privacy ; Edge computing ; Electric power grids ; Electricity distribution ; false data detection ; malicious secure ; Privacy ; privacy-preserving ; Robustness ; Smart grid ; Smart grids ; Smart meters ; Use statistics</subject><ispartof>IEEE transactions on smart grid, 2024-03, Vol.15 (2), p.2203-2213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4430-8408 ; 0000-0003-3140-2320 ; 0009-0005-7823-8064 ; 0000-0002-8838-6248 ; 0009-0008-5472-0739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10254595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pang, Haolin</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Fu, Youcai</creatorcontrib><creatorcontrib>Liu, Jia-Nan</creatorcontrib><creatorcontrib>Liu, Xueqiao</creatorcontrib><creatorcontrib>Tan, Wuzheng</creatorcontrib><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data aggregation</subject><subject>Data management</subject><subject>Data privacy</subject><subject>Edge computing</subject><subject>Electric power grids</subject><subject>Electricity distribution</subject><subject>false data detection</subject><subject>malicious secure</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Robustness</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Smart meters</subject><subject>Use statistics</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEtPYnQOHSJw7kjjtmuO0jYE0xGFDHEOauiXTaEeaHvj3pNqEsA_-0GNbfgm55WzKOVMPu-16KpiAKQDPZsAuyIgrqRJgGb_8y1O4JpOu27NoAJAJNSIfq8YUB9fUdFVVzjpsAjVNSV_MIVZt39Et2t4jXZpg6LyuPdYmuLahrqHbL-MDXXtX0ncXPumjOXRncokB7cDdkKtqaE_OcUzeHle7xVOyeV0_L-abxAqZhgQyKCSmucVSFiJTkOYFMlXOcsnLgmOFBRMVk7MMkTHFAcrMcpSCgzCWlTAm96e9R99-99gFvW9738STWqjowLnKI8VOlPVt13ms9NG7-MWP5kwPUuoopR6k1Gcp48jdacQh4j9cpDJVKfwCQ5NuNw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Pang, Haolin</creator><creator>He, Kai</creator><creator>Fu, Youcai</creator><creator>Liu, Jia-Nan</creator><creator>Liu, Xueqiao</creator><creator>Tan, Wuzheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4430-8408</orcidid><orcidid>https://orcid.org/0000-0003-3140-2320</orcidid><orcidid>https://orcid.org/0009-0005-7823-8064</orcidid><orcidid>https://orcid.org/0000-0002-8838-6248</orcidid><orcidid>https://orcid.org/0009-0008-5472-0739</orcidid></search><sort><creationdate>20240301</creationdate><title>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</title><author>Pang, Haolin ; He, Kai ; Fu, Youcai ; Liu, Jia-Nan ; Liu, Xueqiao ; Tan, Wuzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data aggregation</topic><topic>Data management</topic><topic>Data privacy</topic><topic>Edge computing</topic><topic>Electric power grids</topic><topic>Electricity distribution</topic><topic>false data detection</topic><topic>malicious secure</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Robustness</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Smart meters</topic><topic>Use statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Haolin</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Fu, Youcai</creatorcontrib><creatorcontrib>Liu, Jia-Nan</creatorcontrib><creatorcontrib>Liu, Xueqiao</creatorcontrib><creatorcontrib>Tan, Wuzheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Haolin</au><au>He, Kai</au><au>Fu, Youcai</au><au>Liu, Jia-Nan</au><au>Liu, Xueqiao</au><au>Tan, Wuzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><spage>2203</spage><epage>2213</epage><pages>2203-2213</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>As the next-generation power grid, the smart grid has significantly improved dependability, flexibility, and efficiency compared with the traditional power grid. However, due to increasingly diverse application requirements, it faces challenges on balancing data privacy, efficiency, and robustness. In this paper, we present a fog computing-based smart grid model. In addition, based on the proposed model, we construct an efficient and privacy-preserving scheme that supports malicious secure smart grid usage data aggregation communication. To our best knowledge, this is the first concrete smart grid solution that concurrently achieves secure aggregation communication, data privacy, and data robustness (e.g., false data detection). Specifically, benefiting from Boolean/Arithmetic secret-sharing methods, our proposed scheme allows home users to report their electricity usage data to the cloud and fogs securely. Besides, a false data detection protocol is proposed to resist false data injection attacks launched by malicious home users. Theoretical analysis and experimental implementation show that our scheme efficiently achieves data security, anonymity, and robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3316730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4430-8408</orcidid><orcidid>https://orcid.org/0000-0003-3140-2320</orcidid><orcidid>https://orcid.org/0009-0005-7823-8064</orcidid><orcidid>https://orcid.org/0000-0002-8838-6248</orcidid><orcidid>https://orcid.org/0009-0008-5472-0739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-03, Vol.15 (2), p.2203-2213
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2929231198
source IEEE Electronic Library (IEL) Journals
subjects Cloud computing
Computational modeling
Data aggregation
Data management
Data privacy
Edge computing
Electric power grids
Electricity distribution
false data detection
malicious secure
Privacy
privacy-preserving
Robustness
Smart grid
Smart grids
Smart meters
Use statistics
title Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid With False Data Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Efficient%20and%20Malicious%20Secure%20Data%20Aggregation%20in%20Smart%20Grid%20With%20False%20Data%20Detection&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Pang,%20Haolin&rft.date=2024-03-01&rft.volume=15&rft.issue=2&rft.spage=2203&rft.epage=2213&rft.pages=2203-2213&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3316730&rft_dat=%3Cproquest_ieee_%3E2929231198%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-363b4e58ced4b269358be09d7841db1efeb02f0476ee009133d6c1e42132ac0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929231198&rft_id=info:pmid/&rft_ieee_id=10254595&rfr_iscdi=true