Loading…

Univariate polynomial factorization over finite fields with large extension degree

The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d 1.5 + o ( 1 ) for input polynomials of degree d , and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast...

Full description

Saved in:
Bibliographic Details
Published in:Applicable algebra in engineering, communication and computing communication and computing, 2024-03, Vol.35 (2), p.121-149
Main Authors: Hoeven, Joris van der, Lecerf, Grégoire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-e6cd89b24dc9d0fc41f4ceaeab713c5de1d95c58588249698b3c76116cbae6333
container_end_page 149
container_issue 2
container_start_page 121
container_title Applicable algebra in engineering, communication and computing
container_volume 35
creator Hoeven, Joris van der
Lecerf, Grégoire
description The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d 1.5 + o ( 1 ) for input polynomials of degree d , and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.
doi_str_mv 10.1007/s00200-021-00536-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929956596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929956596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e6cd89b24dc9d0fc41f4ceaeab713c5de1d95c58588249698b3c76116cbae6333</originalsourceid><addsrcrecordid>eNp9kF9LwzAUR4MoOKdfwKeCz9GbpE2bRxn-g4Eg7jmk6e3M6JqZZNP56e2s4JtP9-Wc34VDyCWDawZQ3kQADkCBMwpQCEnZEZmwXHAKkvNjMgElKsp4qU7JWYwrAJAqLyfkZdG7nQnOJMw2vtv3fu1Ml7XGJh_cl0nO95nfYcha17sBah12Tcw-XHrLOhOWmOFnwj4euAaXAfGcnLSmi3jxe6dkcX_3Onuk8-eHp9ntnFrB8kRR2qZSNc8bqxpobc7a3KJBU5dM2KJB1qjCFlVRVTxXUlW1sKVkTNraoBRCTMnVuLsJ_n2LMemV34Z-eKm54koVslByoPhI2eBjDNjqTXBrE_aagT6002M7PbTTP-00GyQxSnGA-yWGv-l_rG-1CHMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929956596</pqid></control><display><type>article</type><title>Univariate polynomial factorization over finite fields with large extension degree</title><source>Springer Link</source><creator>Hoeven, Joris van der ; Lecerf, Grégoire</creator><creatorcontrib>Hoeven, Joris van der ; Lecerf, Grégoire</creatorcontrib><description>The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d 1.5 + o ( 1 ) for input polynomials of degree d , and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-021-00536-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Hardware ; Computer Science ; Fields (mathematics) ; Original Paper ; Polynomials ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2024-03, Vol.35 (2), p.121-149</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-e6cd89b24dc9d0fc41f4ceaeab713c5de1d95c58588249698b3c76116cbae6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hoeven, Joris van der</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>Univariate polynomial factorization over finite fields with large extension degree</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d 1.5 + o ( 1 ) for input polynomials of degree d , and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Fields (mathematics)</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUR4MoOKdfwKeCz9GbpE2bRxn-g4Eg7jmk6e3M6JqZZNP56e2s4JtP9-Wc34VDyCWDawZQ3kQADkCBMwpQCEnZEZmwXHAKkvNjMgElKsp4qU7JWYwrAJAqLyfkZdG7nQnOJMw2vtv3fu1Ml7XGJh_cl0nO95nfYcha17sBah12Tcw-XHrLOhOWmOFnwj4euAaXAfGcnLSmi3jxe6dkcX_3Onuk8-eHp9ntnFrB8kRR2qZSNc8bqxpobc7a3KJBU5dM2KJB1qjCFlVRVTxXUlW1sKVkTNraoBRCTMnVuLsJ_n2LMemV34Z-eKm54koVslByoPhI2eBjDNjqTXBrE_aagT6002M7PbTTP-00GyQxSnGA-yWGv-l_rG-1CHMU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hoeven, Joris van der</creator><creator>Lecerf, Grégoire</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Univariate polynomial factorization over finite fields with large extension degree</title><author>Hoeven, Joris van der ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e6cd89b24dc9d0fc41f4ceaeab713c5de1d95c58588249698b3c76116cbae6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Fields (mathematics)</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeven, Joris van der</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoeven, Joris van der</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Univariate polynomial factorization over finite fields with large extension degree</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>121</spage><epage>149</epage><pages>121-149</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d 1.5 + o ( 1 ) for input polynomials of degree d , and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-021-00536-1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-1279
ispartof Applicable algebra in engineering, communication and computing, 2024-03, Vol.35 (2), p.121-149
issn 0938-1279
1432-0622
language eng
recordid cdi_proquest_journals_2929956596
source Springer Link
subjects Algorithms
Artificial Intelligence
Computer Hardware
Computer Science
Fields (mathematics)
Original Paper
Polynomials
Symbolic and Algebraic Manipulation
Theory of Computation
title Univariate polynomial factorization over finite fields with large extension degree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Univariate%20polynomial%20factorization%20over%20finite%20fields%20with%20large%20extension%20degree&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Hoeven,%20Joris%20van%20der&rft.date=2024-03-01&rft.volume=35&rft.issue=2&rft.spage=121&rft.epage=149&rft.pages=121-149&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-021-00536-1&rft_dat=%3Cproquest_cross%3E2929956596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-e6cd89b24dc9d0fc41f4ceaeab713c5de1d95c58588249698b3c76116cbae6333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929956596&rft_id=info:pmid/&rfr_iscdi=true