Loading…
TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES
Elementary first-order theories of trees allowing at most, exactly $\mathrm{m}$ , and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theorie...
Saved in:
Published in: | The bulletin of symbolic logic 2023-12, Vol.29 (4), p.465-502 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-c1adc9bada275c6830b2d46d527a7ba1bc07d563bec8c6de6969283750e0cb853 |
---|---|
cites | |
container_end_page | 502 |
container_issue | 4 |
container_start_page | 465 |
container_title | The bulletin of symbolic logic |
container_volume | 29 |
creator | DAMNJANOVIC, ZLATAN |
description | Elementary first-order theories of trees allowing at most, exactly
$\mathrm{m}$
, and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theories of numbers, sets, and strings. |
doi_str_mv | 10.1017/bsl.2023.5 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930064968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_bsl_2023_5</cupid><jstor_id>27285432</jstor_id><sourcerecordid>27285432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c1adc9bada275c6830b2d46d527a7ba1bc07d563bec8c6de6969283750e0cb853</originalsourceid><addsrcrecordid>eNptkEtLw0AURgdRsFY37oWAOzF13g93bZ3aYGkkHSldDckklZZq6ky78N-b0KIbV_fCPfd88AFwjWAPQSQeirDpYYhJj52ADlKUxEwqetrsUKhYKsnPwUUIawgR5ZR1wNhkWkdmrNNs8RglU6Oz10yb_iCZJGYRDbSZaz2N5rr_Eo2SbGbiNHvS2eEj0bMoHUWtYnYJzpb5JlRXx9kFbyNthuN4kj4nw_4kdoTRXexQXjpV5GWOBXNcEljgkvKSYZGLIkeFg6JknBSVk46XFVdcYUkEgxV0hWSkC24P3q2vv_ZV2Nl1vfefTaTFikDIqWqsXXB3oJyvQ_DV0m796iP33xZB2zZlm6Zs25RtlTcHeB12tf8lscCSUYKb-_1Rln8UflW-V3-Z_-h-AAaJbTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930064968</pqid></control><display><type>article</type><title>TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES</title><source>Cambridge University Press</source><source>JSTOR Archival Journals</source><creator>DAMNJANOVIC, ZLATAN</creator><creatorcontrib>DAMNJANOVIC, ZLATAN</creatorcontrib><description>Elementary first-order theories of trees allowing at most, exactly
$\mathrm{m}$
, and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theories of numbers, sets, and strings.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2023.5</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Set theory ; Trees</subject><ispartof>The bulletin of symbolic logic, 2023-12, Vol.29 (4), p.465-502</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic</rights><rights>The Author(s), 2023</rights><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c1adc9bada275c6830b2d46d527a7ba1bc07d563bec8c6de6969283750e0cb853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27285432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1079898623000057/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471,72960</link.rule.ids></links><search><creatorcontrib>DAMNJANOVIC, ZLATAN</creatorcontrib><title>TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES</title><title>The bulletin of symbolic logic</title><addtitle>Bull. symb. log</addtitle><description>Elementary first-order theories of trees allowing at most, exactly
$\mathrm{m}$
, and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theories of numbers, sets, and strings.</description><subject>Set theory</subject><subject>Trees</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AURgdRsFY37oWAOzF13g93bZ3aYGkkHSldDckklZZq6ky78N-b0KIbV_fCPfd88AFwjWAPQSQeirDpYYhJj52ADlKUxEwqetrsUKhYKsnPwUUIawgR5ZR1wNhkWkdmrNNs8RglU6Oz10yb_iCZJGYRDbSZaz2N5rr_Eo2SbGbiNHvS2eEj0bMoHUWtYnYJzpb5JlRXx9kFbyNthuN4kj4nw_4kdoTRXexQXjpV5GWOBXNcEljgkvKSYZGLIkeFg6JknBSVk46XFVdcYUkEgxV0hWSkC24P3q2vv_ZV2Nl1vfefTaTFikDIqWqsXXB3oJyvQ_DV0m796iP33xZB2zZlm6Zs25RtlTcHeB12tf8lscCSUYKb-_1Rln8UflW-V3-Z_-h-AAaJbTU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>DAMNJANOVIC, ZLATAN</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231201</creationdate><title>TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES</title><author>DAMNJANOVIC, ZLATAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c1adc9bada275c6830b2d46d527a7ba1bc07d563bec8c6de6969283750e0cb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Set theory</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAMNJANOVIC, ZLATAN</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAMNJANOVIC, ZLATAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES</atitle><jtitle>The bulletin of symbolic logic</jtitle><addtitle>Bull. symb. log</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>29</volume><issue>4</issue><spage>465</spage><epage>502</epage><pages>465-502</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>Elementary first-order theories of trees allowing at most, exactly
$\mathrm{m}$
, and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theories of numbers, sets, and strings.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2023.5</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2023-12, Vol.29 (4), p.465-502 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_proquest_journals_2930064968 |
source | Cambridge University Press; JSTOR Archival Journals |
subjects | Set theory Trees |
title | TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TREE%20THEORY:%20INTERPRETABILITY%20BETWEEN%20WEAK%20FIRST-ORDER%20THEORIES%20OF%20TREES&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=DAMNJANOVIC,%20ZLATAN&rft.date=2023-12-01&rft.volume=29&rft.issue=4&rft.spage=465&rft.epage=502&rft.pages=465-502&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2023.5&rft_dat=%3Cjstor_proqu%3E27285432%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-c1adc9bada275c6830b2d46d527a7ba1bc07d563bec8c6de6969283750e0cb853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930064968&rft_id=info:pmid/&rft_cupid=10_1017_bsl_2023_5&rft_jstor_id=27285432&rfr_iscdi=true |