Loading…

On the Fractional Version of Cosmic Ray Acceleration Nonlocality

The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Po...

Full description

Saved in:
Bibliographic Details
Published in:Physics of atomic nuclei 2023-12, Vol.86 (6), p.1235-1240
Main Authors: Uchaikin, V. V., Sibatov, R. T., Kozhemyakin, I. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c341t-d951f20ef2515858d6f29e7bcae1918ac31298dced5372b6e0f616de9deeb80a3
container_end_page 1240
container_issue 6
container_start_page 1235
container_title Physics of atomic nuclei
container_volume 86
creator Uchaikin, V. V.
Sibatov, R. T.
Kozhemyakin, I. I.
description The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Poisson nature of the ISM ensemble. This property is responsible for the appearance of local operators in diffusion-type equations. However, the interstellar cloud structure, coupled with its turbulent nature, is an example of a strongly correlated medium where CR transport does not obey the ordinary diffusion theory. To describe it, the authors use the generalized (non-local) transport equation for describing the distributed acceleration of CRs as multiple scattering in the momentum phase space, taking into account the long-range correlations of magnetic field in ISM. The latter is realized by means of solving fractional order integro-differential equation for momentum distribution by Monte Carlo method. Numerical calculations have confirmed analytical results obtained earlier and demonstrate steepening of the energy spectrum due to the increease in medium correlations.
doi_str_mv 10.1134/S1063778824010587
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930595682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A783708930</galeid><sourcerecordid>A783708930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-d951f20ef2515858d6f29e7bcae1918ac31298dced5372b6e0f616de9deeb80a3</originalsourceid><addsrcrecordid>eNp1kcFKAzEQQBdRsFY_wNuCJw9bM0mzm9wsxWqhWGhVvC1pdlK3bDc1ScH-vSkVpIjMYYbMe2GGSZJrID0A1r-bA8lZUQhB-wQIF8VJ0gGe0yyX9P001rGd7fvnyYX3K0IABCed5H7apuED05FTOtS2VU36hs7HKrUmHVq_rnU6U7t0oDU26NQeSp9t21itmjrsLpMzoxqPVz-5m7yOHl6GT9lk-jgeDiaZZn0IWSU5GErQUA5ccFHlhkosFlohSBBKM6BSVBorzgq6yJGYHPIKZYW4EESxbnJz-Hfj7OcWfShXduvivL6kkhEueS5opHoHaqkaLOvW2BAXi1FhXMS2aOr4PigEK4iIWhRuj4TIBPwKS7X1vhzPZ8csHFjtrPcOTblx9Vq5XQmk3F-h_HOF6NCD4yPbLtH9jv2_9A2yBYcf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930595682</pqid></control><display><type>article</type><title>On the Fractional Version of Cosmic Ray Acceleration Nonlocality</title><source>Springer Nature</source><creator>Uchaikin, V. V. ; Sibatov, R. T. ; Kozhemyakin, I. I.</creator><creatorcontrib>Uchaikin, V. V. ; Sibatov, R. T. ; Kozhemyakin, I. I.</creatorcontrib><description>The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Poisson nature of the ISM ensemble. This property is responsible for the appearance of local operators in diffusion-type equations. However, the interstellar cloud structure, coupled with its turbulent nature, is an example of a strongly correlated medium where CR transport does not obey the ordinary diffusion theory. To describe it, the authors use the generalized (non-local) transport equation for describing the distributed acceleration of CRs as multiple scattering in the momentum phase space, taking into account the long-range correlations of magnetic field in ISM. The latter is realized by means of solving fractional order integro-differential equation for momentum distribution by Monte Carlo method. Numerical calculations have confirmed analytical results obtained earlier and demonstrate steepening of the energy spectrum due to the increease in medium correlations.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778824010587</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Correlation ; Cosmic rays ; Differential equations ; Diffusion theory ; ELEMENTARY PARTICLES AND FIELDS/Theory ; Energy spectra ; Interstellar matter ; Kinetic equations ; Magnetic fields ; Momentum ; Monte Carlo method ; Monte Carlo simulation ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Transport equations ; Transport theory</subject><ispartof>Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1235-1240</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-d951f20ef2515858d6f29e7bcae1918ac31298dced5372b6e0f616de9deeb80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Uchaikin, V. V.</creatorcontrib><creatorcontrib>Sibatov, R. T.</creatorcontrib><creatorcontrib>Kozhemyakin, I. I.</creatorcontrib><title>On the Fractional Version of Cosmic Ray Acceleration Nonlocality</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Poisson nature of the ISM ensemble. This property is responsible for the appearance of local operators in diffusion-type equations. However, the interstellar cloud structure, coupled with its turbulent nature, is an example of a strongly correlated medium where CR transport does not obey the ordinary diffusion theory. To describe it, the authors use the generalized (non-local) transport equation for describing the distributed acceleration of CRs as multiple scattering in the momentum phase space, taking into account the long-range correlations of magnetic field in ISM. The latter is realized by means of solving fractional order integro-differential equation for momentum distribution by Monte Carlo method. Numerical calculations have confirmed analytical results obtained earlier and demonstrate steepening of the energy spectrum due to the increease in medium correlations.</description><subject>Correlation</subject><subject>Cosmic rays</subject><subject>Differential equations</subject><subject>Diffusion theory</subject><subject>ELEMENTARY PARTICLES AND FIELDS/Theory</subject><subject>Energy spectra</subject><subject>Interstellar matter</subject><subject>Kinetic equations</subject><subject>Magnetic fields</subject><subject>Momentum</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Transport equations</subject><subject>Transport theory</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKAzEQQBdRsFY_wNuCJw9bM0mzm9wsxWqhWGhVvC1pdlK3bDc1ScH-vSkVpIjMYYbMe2GGSZJrID0A1r-bA8lZUQhB-wQIF8VJ0gGe0yyX9P001rGd7fvnyYX3K0IABCed5H7apuED05FTOtS2VU36hs7HKrUmHVq_rnU6U7t0oDU26NQeSp9t21itmjrsLpMzoxqPVz-5m7yOHl6GT9lk-jgeDiaZZn0IWSU5GErQUA5ccFHlhkosFlohSBBKM6BSVBorzgq6yJGYHPIKZYW4EESxbnJz-Hfj7OcWfShXduvivL6kkhEueS5opHoHaqkaLOvW2BAXi1FhXMS2aOr4PigEK4iIWhRuj4TIBPwKS7X1vhzPZ8csHFjtrPcOTblx9Vq5XQmk3F-h_HOF6NCD4yPbLtH9jv2_9A2yBYcf</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Uchaikin, V. V.</creator><creator>Sibatov, R. T.</creator><creator>Kozhemyakin, I. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231201</creationdate><title>On the Fractional Version of Cosmic Ray Acceleration Nonlocality</title><author>Uchaikin, V. V. ; Sibatov, R. T. ; Kozhemyakin, I. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-d951f20ef2515858d6f29e7bcae1918ac31298dced5372b6e0f616de9deeb80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Cosmic rays</topic><topic>Differential equations</topic><topic>Diffusion theory</topic><topic>ELEMENTARY PARTICLES AND FIELDS/Theory</topic><topic>Energy spectra</topic><topic>Interstellar matter</topic><topic>Kinetic equations</topic><topic>Magnetic fields</topic><topic>Momentum</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Transport equations</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchaikin, V. V.</creatorcontrib><creatorcontrib>Sibatov, R. T.</creatorcontrib><creatorcontrib>Kozhemyakin, I. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchaikin, V. V.</au><au>Sibatov, R. T.</au><au>Kozhemyakin, I. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fractional Version of Cosmic Ray Acceleration Nonlocality</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>86</volume><issue>6</issue><spage>1235</spage><epage>1240</epage><pages>1235-1240</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Poisson nature of the ISM ensemble. This property is responsible for the appearance of local operators in diffusion-type equations. However, the interstellar cloud structure, coupled with its turbulent nature, is an example of a strongly correlated medium where CR transport does not obey the ordinary diffusion theory. To describe it, the authors use the generalized (non-local) transport equation for describing the distributed acceleration of CRs as multiple scattering in the momentum phase space, taking into account the long-range correlations of magnetic field in ISM. The latter is realized by means of solving fractional order integro-differential equation for momentum distribution by Monte Carlo method. Numerical calculations have confirmed analytical results obtained earlier and demonstrate steepening of the energy spectrum due to the increease in medium correlations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778824010587</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1235-1240
issn 1063-7788
1562-692X
language eng
recordid cdi_proquest_journals_2930595682
source Springer Nature
subjects Correlation
Cosmic rays
Differential equations
Diffusion theory
ELEMENTARY PARTICLES AND FIELDS/Theory
Energy spectra
Interstellar matter
Kinetic equations
Magnetic fields
Momentum
Monte Carlo method
Monte Carlo simulation
Particle and Nuclear Physics
Physics
Physics and Astronomy
Transport equations
Transport theory
title On the Fractional Version of Cosmic Ray Acceleration Nonlocality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fractional%20Version%20of%20Cosmic%20Ray%20Acceleration%20Nonlocality&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Uchaikin,%20V.%20V.&rft.date=2023-12-01&rft.volume=86&rft.issue=6&rft.spage=1235&rft.epage=1240&rft.pages=1235-1240&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778824010587&rft_dat=%3Cgale_proqu%3EA783708930%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-d951f20ef2515858d6f29e7bcae1918ac31298dced5372b6e0f616de9deeb80a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930595682&rft_id=info:pmid/&rft_galeid=A783708930&rfr_iscdi=true