Loading…

Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage

Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance....

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-02, Vol.13 (4), p.715
Main Authors: Xie, Xiaqing, Zang, Wenyu, Hu, Yanlin, Ji, Jiangyu, Xiong, Zhihao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3
container_end_page
container_issue 4
container_start_page 715
container_title Electronics (Basel)
container_volume 13
creator Xie, Xiaqing
Zang, Wenyu
Hu, Yanlin
Ji, Jiangyu
Xiong, Zhihao
description Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.
doi_str_mv 10.3390/electronics13040715
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930888635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784038739</galeid><sourcerecordid>A784038739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</originalsourceid><addsrcrecordid>eNptUMFqAjEQDaWFivULegn0vDbZ2XWTo4i1gm1BlB6XmMyu0TWxySr4991iDz105jDD4703zCPkkbMhgGTP2KBug3dWRw4sYwXPb0gvZYVMZCrT2z_7PRnEuGNdSQ4CWI-s3v0ZG_qG7dYb6is6NTUmSzz4s3U1_VTNnlY-0FlQxy1d4jFgRNeq1npHraPriIHOTQfZ9kIX1u1VjQ_krlJNxMHv7JP1y3Q1eU0WH7P5ZLxINHDeJqkWKA1URsgMhEGtcgQusGAVmA3rXuEiQ6YwLXDEuRabUZ5vdCGNECnLDfTJ09X3GPzXCWNb7vwpuO5kmUpgQogR5B1reGXVqsHSusq3QemuDR6s9g4r2-HjQmQMRAGyE8BVoIOPMWBVHoM9qHApOSt_Ii__iRy-AaGqdoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930888635</pqid></control><display><type>article</type><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><source>Publicly Available Content Database</source><creator>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</creator><creatorcontrib>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</creatorcontrib><description>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13040715</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Computational linguistics ; Efficiency ; Graph representations ; Graph theory ; Graphical representations ; Language processing ; Methods ; Natural language interfaces ; Neural networks ; Random walk ; Sequences ; Social networks</subject><ispartof>Electronics (Basel), 2024-02, Vol.13 (4), p.715</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</cites><orcidid>0009-0007-4963-3553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930888635/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930888635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Zang, Wenyu</creatorcontrib><creatorcontrib>Hu, Yanlin</creatorcontrib><creatorcontrib>Ji, Jiangyu</creatorcontrib><creatorcontrib>Xiong, Zhihao</creatorcontrib><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><title>Electronics (Basel)</title><description>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computational linguistics</subject><subject>Efficiency</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Language processing</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Random walk</subject><subject>Sequences</subject><subject>Social networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUMFqAjEQDaWFivULegn0vDbZ2XWTo4i1gm1BlB6XmMyu0TWxySr4991iDz105jDD4703zCPkkbMhgGTP2KBug3dWRw4sYwXPb0gvZYVMZCrT2z_7PRnEuGNdSQ4CWI-s3v0ZG_qG7dYb6is6NTUmSzz4s3U1_VTNnlY-0FlQxy1d4jFgRNeq1npHraPriIHOTQfZ9kIX1u1VjQ_krlJNxMHv7JP1y3Q1eU0WH7P5ZLxINHDeJqkWKA1URsgMhEGtcgQusGAVmA3rXuEiQ6YwLXDEuRabUZ5vdCGNECnLDfTJ09X3GPzXCWNb7vwpuO5kmUpgQogR5B1reGXVqsHSusq3QemuDR6s9g4r2-HjQmQMRAGyE8BVoIOPMWBVHoM9qHApOSt_Ii__iRy-AaGqdoQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Xie, Xiaqing</creator><creator>Zang, Wenyu</creator><creator>Hu, Yanlin</creator><creator>Ji, Jiangyu</creator><creator>Xiong, Zhihao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0007-4963-3553</orcidid></search><sort><creationdate>20240201</creationdate><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><author>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computational linguistics</topic><topic>Efficiency</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Language processing</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Random walk</topic><topic>Sequences</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Zang, Wenyu</creatorcontrib><creatorcontrib>Hu, Yanlin</creatorcontrib><creatorcontrib>Ji, Jiangyu</creatorcontrib><creatorcontrib>Xiong, Zhihao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaqing</au><au>Zang, Wenyu</au><au>Hu, Yanlin</au><au>Ji, Jiangyu</au><au>Xiong, Zhihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>4</issue><spage>715</spage><pages>715-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13040715</doi><orcidid>https://orcid.org/0009-0007-4963-3553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-02, Vol.13 (4), p.715
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2930888635
source Publicly Available Content Database
subjects Algorithms
Analysis
Computational linguistics
Efficiency
Graph representations
Graph theory
Graphical representations
Language processing
Methods
Natural language interfaces
Neural networks
Random walk
Sequences
Social networks
title Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Method%20of%20Edge-Removing%20Walk%20for%20Graph%20Representation%20in%20User%20Identity%20Linkage&rft.jtitle=Electronics%20(Basel)&rft.au=Xie,%20Xiaqing&rft.date=2024-02-01&rft.volume=13&rft.issue=4&rft.spage=715&rft.pages=715-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13040715&rft_dat=%3Cgale_proqu%3EA784038739%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930888635&rft_id=info:pmid/&rft_galeid=A784038739&rfr_iscdi=true