Loading…
Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage
Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance....
Saved in:
Published in: | Electronics (Basel) 2024-02, Vol.13 (4), p.715 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3 |
container_end_page | |
container_issue | 4 |
container_start_page | 715 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Xie, Xiaqing Zang, Wenyu Hu, Yanlin Ji, Jiangyu Xiong, Zhihao |
description | Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance. |
doi_str_mv | 10.3390/electronics13040715 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930888635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784038739</galeid><sourcerecordid>A784038739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</originalsourceid><addsrcrecordid>eNptUMFqAjEQDaWFivULegn0vDbZ2XWTo4i1gm1BlB6XmMyu0TWxySr4991iDz105jDD4703zCPkkbMhgGTP2KBug3dWRw4sYwXPb0gvZYVMZCrT2z_7PRnEuGNdSQ4CWI-s3v0ZG_qG7dYb6is6NTUmSzz4s3U1_VTNnlY-0FlQxy1d4jFgRNeq1npHraPriIHOTQfZ9kIX1u1VjQ_krlJNxMHv7JP1y3Q1eU0WH7P5ZLxINHDeJqkWKA1URsgMhEGtcgQusGAVmA3rXuEiQ6YwLXDEuRabUZ5vdCGNECnLDfTJ09X3GPzXCWNb7vwpuO5kmUpgQogR5B1reGXVqsHSusq3QemuDR6s9g4r2-HjQmQMRAGyE8BVoIOPMWBVHoM9qHApOSt_Ii__iRy-AaGqdoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930888635</pqid></control><display><type>article</type><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><source>Publicly Available Content Database</source><creator>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</creator><creatorcontrib>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</creatorcontrib><description>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13040715</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Computational linguistics ; Efficiency ; Graph representations ; Graph theory ; Graphical representations ; Language processing ; Methods ; Natural language interfaces ; Neural networks ; Random walk ; Sequences ; Social networks</subject><ispartof>Electronics (Basel), 2024-02, Vol.13 (4), p.715</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</cites><orcidid>0009-0007-4963-3553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930888635/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930888635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Zang, Wenyu</creatorcontrib><creatorcontrib>Hu, Yanlin</creatorcontrib><creatorcontrib>Ji, Jiangyu</creatorcontrib><creatorcontrib>Xiong, Zhihao</creatorcontrib><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><title>Electronics (Basel)</title><description>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computational linguistics</subject><subject>Efficiency</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Language processing</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Random walk</subject><subject>Sequences</subject><subject>Social networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUMFqAjEQDaWFivULegn0vDbZ2XWTo4i1gm1BlB6XmMyu0TWxySr4991iDz105jDD4703zCPkkbMhgGTP2KBug3dWRw4sYwXPb0gvZYVMZCrT2z_7PRnEuGNdSQ4CWI-s3v0ZG_qG7dYb6is6NTUmSzz4s3U1_VTNnlY-0FlQxy1d4jFgRNeq1npHraPriIHOTQfZ9kIX1u1VjQ_krlJNxMHv7JP1y3Q1eU0WH7P5ZLxINHDeJqkWKA1URsgMhEGtcgQusGAVmA3rXuEiQ6YwLXDEuRabUZ5vdCGNECnLDfTJ09X3GPzXCWNb7vwpuO5kmUpgQogR5B1reGXVqsHSusq3QemuDR6s9g4r2-HjQmQMRAGyE8BVoIOPMWBVHoM9qHApOSt_Ii__iRy-AaGqdoQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Xie, Xiaqing</creator><creator>Zang, Wenyu</creator><creator>Hu, Yanlin</creator><creator>Ji, Jiangyu</creator><creator>Xiong, Zhihao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0007-4963-3553</orcidid></search><sort><creationdate>20240201</creationdate><title>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</title><author>Xie, Xiaqing ; Zang, Wenyu ; Hu, Yanlin ; Ji, Jiangyu ; Xiong, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computational linguistics</topic><topic>Efficiency</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Language processing</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Random walk</topic><topic>Sequences</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Zang, Wenyu</creatorcontrib><creatorcontrib>Hu, Yanlin</creatorcontrib><creatorcontrib>Ji, Jiangyu</creatorcontrib><creatorcontrib>Xiong, Zhihao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaqing</au><au>Zang, Wenyu</au><au>Hu, Yanlin</au><au>Ji, Jiangyu</au><au>Xiong, Zhihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>4</issue><spage>715</spage><pages>715-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Random-walk-based graph representation methods have been widely applied in User Identity Linkage (UIL) tasks, which links overlapping users between two different social networks. It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing unnecessary computation and storage overhead. This paper proposes a novel method called Edge-Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes edges once they are walked in a walk round to capture the l−hop features without repetition, and it walks the whole graph for several rounds to capture the different kinds of paths starting from a specific node. Experiments proved that ERW can exponentially improve the efficiency for random-walk-based UIL models, even maintaining better performance. We finally generalize ERW into a general User Identity Linkage framework called ERW-UIL and verify its performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13040715</doi><orcidid>https://orcid.org/0009-0007-4963-3553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-02, Vol.13 (4), p.715 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2930888635 |
source | Publicly Available Content Database |
subjects | Algorithms Analysis Computational linguistics Efficiency Graph representations Graph theory Graphical representations Language processing Methods Natural language interfaces Neural networks Random walk Sequences Social networks |
title | Novel Method of Edge-Removing Walk for Graph Representation in User Identity Linkage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Method%20of%20Edge-Removing%20Walk%20for%20Graph%20Representation%20in%20User%20Identity%20Linkage&rft.jtitle=Electronics%20(Basel)&rft.au=Xie,%20Xiaqing&rft.date=2024-02-01&rft.volume=13&rft.issue=4&rft.spage=715&rft.pages=715-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13040715&rft_dat=%3Cgale_proqu%3EA784038739%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-2c8e9d3fd89438deca5e318e70f3db0040184e0ae27e611c8b655bc79d88205d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930888635&rft_id=info:pmid/&rft_galeid=A784038739&rfr_iscdi=true |