Loading…
AuroraMag: Twin Explorer of Asymmetry in Aurora and Solar Wind-Magnetosphere Coupling
In the present-day context, small satellites and their constellations consisting of varying sizes (nano, micro, pico satellites) are being favored for remote sensing and in situ probing of the heliosphere and terrestrial magnetosphere-ionosphere system. We introduce a mission concept aimed at concur...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present-day context, small satellites and their constellations consisting of varying sizes (nano, micro, pico satellites) are being favored for remote sensing and in situ probing of the heliosphere and terrestrial magnetosphere-ionosphere system. We introduce a mission concept aimed at concurrently observing Earth's northern and southern auroral ovals while conducting in situ measurements of particles, fields, and temperature. The mission concept consists of two small satellites, each having an identical auroral X-ray imager, an in situ particle detector, a magnetometer pair, and an electron temperature analyzer onboard in an elliptical polar orbit (400X1000 km ). This mission would assist the space weather community in primarily answering important questions about the formation, morphology, and hemispherical asymmetries that we observe in the X-ray aurora, the fluxes of precipitating particles, Solar Energetic Particles, currents, and cusp dynamics. Once realized, this would be the first dedicated twin spacecraft mission of such kind to simultaneously study hemispheric asymmetries of solar-wind magnetosphere coupling. This study reveals the intricacies of the mission concept, encompassing orbital details, potential payloads, and its underlying scientific objectives. By leveraging the capabilities of small satellites, this mission concept is poised to make significant contributions to space weather monitoring and research. |
---|---|
ISSN: | 2331-8422 |