Loading…

ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications

In this work, ZnO nanoparticles were used to improve the thermal performance of Therminol 55 oil. The addition of ZnO nanoparticles to Therminol 55 increased the thermal conductivity and viscosity by 6% and 43.9% respectively at room temperature (27 °C) at a nanoparticle concentration of 2 vol.%. Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2024-03, Vol.26 (3), p.42, Article 42
Main Authors: H, Vikraman, V, Hari Suthan, K. S, Rajan, K. S, Suganthi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1bb606b5898bfc5fe3029cbd7a94d2b31a0536a286463af8fa265d5342dd54973
container_end_page
container_issue 3
container_start_page 42
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 26
creator H, Vikraman
V, Hari Suthan
K. S, Rajan
K. S, Suganthi
description In this work, ZnO nanoparticles were used to improve the thermal performance of Therminol 55 oil. The addition of ZnO nanoparticles to Therminol 55 increased the thermal conductivity and viscosity by 6% and 43.9% respectively at room temperature (27 °C) at a nanoparticle concentration of 2 vol.%. The thermal conductivity-temperature relation of ZnO-Therminol 55 nanofluids was biphasic. Thermal conductivity enhancement was observed at lower temperatures (10% enhancement at 10 °C; ϕ  = 2 vol. %) as well as at higher temperatures (18.3% enhancement at 100 °C; ϕ  = 2 vol. %), which were attributed to the layering of Therminol 55 molecules over ZnO nanoparticles’ surface (at lower temperatures) and Brownian motion of nanoparticles (at higher temperatures) respectively. The relative viscosity of ZnO-Therminol 55 nanofluids also decreased with increasing temperature ( μ r  = 1.44 @ T  = 27 °C; μ r  ~ 1 @ T  = 140 °C). The heat transfer performance of ZnO-Therminol 55 nanofluids was tested under constant temperature boundary conditions. About 154% and 203% enhancements in overall heat transfer coefficient and test fluid side heat transfer coefficient were observed for 2 vol. % ZnO-Therminol 55 nanofluid compared to pure Therminol 55 due to the improved thermal conductivity, natural convection currents resulting from Brownian motion and particle migration. ZnO-Therminol 55 nanofluids depicting improved thermal properties at higher temperatures can be potentially used as heat transfer fluids above 100 °C, when the thermal resistance in the heat transfer fluid is rate-controlling.
doi_str_mv 10.1007/s11051-024-05952-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931205884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931205884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1bb606b5898bfc5fe3029cbd7a94d2b31a0536a286463af8fa265d5342dd54973</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczQfm2xylOIXCL1UEC8hu5vYLdtkTbJC_71pK3jzMMzAvM87wwvANcG3BOP6LhGCOUGYVghzxSkiJ2BGeE2RVOL9tMxMSoRrUZ2Di5Q2GBNBFZ2B9OGX0BsfUo5Tm6doE9yGbhpMtjCvDxW3AY3rXepbM8AxhtHG3BddcHC13_Y-DJBz6Mx3iKYZdtCFCNfWZJij8cnZCM04DoXPffDpEpw5MyR79dvn4O3xYbV4Rq_Lp5fF_StqaY0zIk0jsGi4VLJxLXeWYarapquNqjraMGIwZ8JQKSrBjJPOUME7ziradbxSNZuDm6Nv-flrsinrTZiiLyc1VYxQzKWsiooeVW0MKUXr9Bj7rYk7TbDeh6uP4eoSrj6Eq0mB2BFKRew_bfyz_of6Accdfs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931205884</pqid></control><display><type>article</type><title>ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications</title><source>Springer Link</source><creator>H, Vikraman ; V, Hari Suthan ; K. S, Rajan ; K. S, Suganthi</creator><creatorcontrib>H, Vikraman ; V, Hari Suthan ; K. S, Rajan ; K. S, Suganthi</creatorcontrib><description>In this work, ZnO nanoparticles were used to improve the thermal performance of Therminol 55 oil. The addition of ZnO nanoparticles to Therminol 55 increased the thermal conductivity and viscosity by 6% and 43.9% respectively at room temperature (27 °C) at a nanoparticle concentration of 2 vol.%. The thermal conductivity-temperature relation of ZnO-Therminol 55 nanofluids was biphasic. Thermal conductivity enhancement was observed at lower temperatures (10% enhancement at 10 °C; ϕ  = 2 vol. %) as well as at higher temperatures (18.3% enhancement at 100 °C; ϕ  = 2 vol. %), which were attributed to the layering of Therminol 55 molecules over ZnO nanoparticles’ surface (at lower temperatures) and Brownian motion of nanoparticles (at higher temperatures) respectively. The relative viscosity of ZnO-Therminol 55 nanofluids also decreased with increasing temperature ( μ r  = 1.44 @ T  = 27 °C; μ r  ~ 1 @ T  = 140 °C). The heat transfer performance of ZnO-Therminol 55 nanofluids was tested under constant temperature boundary conditions. About 154% and 203% enhancements in overall heat transfer coefficient and test fluid side heat transfer coefficient were observed for 2 vol. % ZnO-Therminol 55 nanofluid compared to pure Therminol 55 due to the improved thermal conductivity, natural convection currents resulting from Brownian motion and particle migration. ZnO-Therminol 55 nanofluids depicting improved thermal properties at higher temperatures can be potentially used as heat transfer fluids above 100 °C, when the thermal resistance in the heat transfer fluid is rate-controlling.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-024-05952-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boundary conditions ; Brownian motion ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Convection ; Convection currents ; Free convection ; Heat conductivity ; Heat transfer ; Heat transfer coefficients ; High temperature ; Inorganic Chemistry ; Lasers ; Low temperature ; Materials Science ; Nanofluids ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physical properties ; Room temperature ; Temperature ; Thermal conductivity ; Thermal properties ; Thermal resistance ; Thermodynamic properties ; Viscosity ; Zinc oxide</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-03, Vol.26 (3), p.42, Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1bb606b5898bfc5fe3029cbd7a94d2b31a0536a286463af8fa265d5342dd54973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>H, Vikraman</creatorcontrib><creatorcontrib>V, Hari Suthan</creatorcontrib><creatorcontrib>K. S, Rajan</creatorcontrib><creatorcontrib>K. S, Suganthi</creatorcontrib><title>ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>In this work, ZnO nanoparticles were used to improve the thermal performance of Therminol 55 oil. The addition of ZnO nanoparticles to Therminol 55 increased the thermal conductivity and viscosity by 6% and 43.9% respectively at room temperature (27 °C) at a nanoparticle concentration of 2 vol.%. The thermal conductivity-temperature relation of ZnO-Therminol 55 nanofluids was biphasic. Thermal conductivity enhancement was observed at lower temperatures (10% enhancement at 10 °C; ϕ  = 2 vol. %) as well as at higher temperatures (18.3% enhancement at 100 °C; ϕ  = 2 vol. %), which were attributed to the layering of Therminol 55 molecules over ZnO nanoparticles’ surface (at lower temperatures) and Brownian motion of nanoparticles (at higher temperatures) respectively. The relative viscosity of ZnO-Therminol 55 nanofluids also decreased with increasing temperature ( μ r  = 1.44 @ T  = 27 °C; μ r  ~ 1 @ T  = 140 °C). The heat transfer performance of ZnO-Therminol 55 nanofluids was tested under constant temperature boundary conditions. About 154% and 203% enhancements in overall heat transfer coefficient and test fluid side heat transfer coefficient were observed for 2 vol. % ZnO-Therminol 55 nanofluid compared to pure Therminol 55 due to the improved thermal conductivity, natural convection currents resulting from Brownian motion and particle migration. ZnO-Therminol 55 nanofluids depicting improved thermal properties at higher temperatures can be potentially used as heat transfer fluids above 100 °C, when the thermal resistance in the heat transfer fluid is rate-controlling.</description><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Convection</subject><subject>Convection currents</subject><subject>Free convection</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High temperature</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Viscosity</subject><subject>Zinc oxide</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczQfm2xylOIXCL1UEC8hu5vYLdtkTbJC_71pK3jzMMzAvM87wwvANcG3BOP6LhGCOUGYVghzxSkiJ2BGeE2RVOL9tMxMSoRrUZ2Di5Q2GBNBFZ2B9OGX0BsfUo5Tm6doE9yGbhpMtjCvDxW3AY3rXepbM8AxhtHG3BddcHC13_Y-DJBz6Mx3iKYZdtCFCNfWZJij8cnZCM04DoXPffDpEpw5MyR79dvn4O3xYbV4Rq_Lp5fF_StqaY0zIk0jsGi4VLJxLXeWYarapquNqjraMGIwZ8JQKSrBjJPOUME7ziradbxSNZuDm6Nv-flrsinrTZiiLyc1VYxQzKWsiooeVW0MKUXr9Bj7rYk7TbDeh6uP4eoSrj6Eq0mB2BFKRew_bfyz_of6Accdfs8</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>H, Vikraman</creator><creator>V, Hari Suthan</creator><creator>K. S, Rajan</creator><creator>K. S, Suganthi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240301</creationdate><title>ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications</title><author>H, Vikraman ; V, Hari Suthan ; K. S, Rajan ; K. S, Suganthi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1bb606b5898bfc5fe3029cbd7a94d2b31a0536a286463af8fa265d5342dd54973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Convection</topic><topic>Convection currents</topic><topic>Free convection</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High temperature</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Viscosity</topic><topic>Zinc oxide</topic><toplevel>online_resources</toplevel><creatorcontrib>H, Vikraman</creatorcontrib><creatorcontrib>V, Hari Suthan</creatorcontrib><creatorcontrib>K. S, Rajan</creatorcontrib><creatorcontrib>K. S, Suganthi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H, Vikraman</au><au>V, Hari Suthan</au><au>K. S, Rajan</au><au>K. S, Suganthi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>26</volume><issue>3</issue><spage>42</spage><pages>42-</pages><artnum>42</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this work, ZnO nanoparticles were used to improve the thermal performance of Therminol 55 oil. The addition of ZnO nanoparticles to Therminol 55 increased the thermal conductivity and viscosity by 6% and 43.9% respectively at room temperature (27 °C) at a nanoparticle concentration of 2 vol.%. The thermal conductivity-temperature relation of ZnO-Therminol 55 nanofluids was biphasic. Thermal conductivity enhancement was observed at lower temperatures (10% enhancement at 10 °C; ϕ  = 2 vol. %) as well as at higher temperatures (18.3% enhancement at 100 °C; ϕ  = 2 vol. %), which were attributed to the layering of Therminol 55 molecules over ZnO nanoparticles’ surface (at lower temperatures) and Brownian motion of nanoparticles (at higher temperatures) respectively. The relative viscosity of ZnO-Therminol 55 nanofluids also decreased with increasing temperature ( μ r  = 1.44 @ T  = 27 °C; μ r  ~ 1 @ T  = 140 °C). The heat transfer performance of ZnO-Therminol 55 nanofluids was tested under constant temperature boundary conditions. About 154% and 203% enhancements in overall heat transfer coefficient and test fluid side heat transfer coefficient were observed for 2 vol. % ZnO-Therminol 55 nanofluid compared to pure Therminol 55 due to the improved thermal conductivity, natural convection currents resulting from Brownian motion and particle migration. ZnO-Therminol 55 nanofluids depicting improved thermal properties at higher temperatures can be potentially used as heat transfer fluids above 100 °C, when the thermal resistance in the heat transfer fluid is rate-controlling.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-024-05952-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-03, Vol.26 (3), p.42, Article 42
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_2931205884
source Springer Link
subjects Boundary conditions
Brownian motion
Characterization and Evaluation of Materials
Chemistry and Materials Science
Convection
Convection currents
Free convection
Heat conductivity
Heat transfer
Heat transfer coefficients
High temperature
Inorganic Chemistry
Lasers
Low temperature
Materials Science
Nanofluids
Nanoparticles
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Physical properties
Room temperature
Temperature
Thermal conductivity
Thermal properties
Thermal resistance
Thermodynamic properties
Viscosity
Zinc oxide
title ZnO nanostructures modulate the thermo-physical properties of Therminol 55 favorably for heat transfer applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnO%20nanostructures%20modulate%20the%20thermo-physical%20properties%20of%20Therminol%2055%20favorably%20for%20heat%20transfer%20applications&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=H,%20Vikraman&rft.date=2024-03-01&rft.volume=26&rft.issue=3&rft.spage=42&rft.pages=42-&rft.artnum=42&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-024-05952-1&rft_dat=%3Cproquest_cross%3E2931205884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1bb606b5898bfc5fe3029cbd7a94d2b31a0536a286463af8fa265d5342dd54973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931205884&rft_id=info:pmid/&rfr_iscdi=true