Loading…

Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia

Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2024-03, Vol.17 (3), p.1209-1216
Main Authors: Yang, Miaosen, Wei, Tianran, He, Jia, Liu, Qian, Feng, Ligang, Li, Hongyi, Luo, Jun, Liu, Xijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623
cites cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623
container_end_page 1216
container_issue 3
container_start_page 1209
container_title Nano research
container_volume 17
creator Yang, Miaosen
Wei, Tianran
He, Jia
Liu, Qian
Feng, Ligang
Li, Hongyi
Luo, Jun
Liu, Xijun
description Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO 3 RR-to-NH 3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h −1 ·mg cat. −1 , and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO 2 . Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm −2 and a yield rate of 452 µg·h −1 ·mg cat. −1 . Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO 3 − species, and reduce the NO 3 RR-to-NH 3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH 3 electrosynthesis and nitrate removal.
doi_str_mv 10.1007/s12274-023-5997-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931864286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931864286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxTdGE2v1A3gj8YwCu13g2DT-S5r00jth2aGlaaECe6ifXupqPDmXmWTe783kVdU9JY-UEP6UKGO8wYTVeCYlx58X1YRKKTApdfk7U9ZcVzcp7QhpGW3EpLLzAXntg9kPKUNMSHuzDRF6FDxauxX73qYtQE7Ihoi2brPFYK0zDrw5IdiDyfFMDCa7AgWLvMtRZ0A5IH04BO_0bXVl9T7B3U-fVuuX5_XiDS9Xr--L-RKbmrYZdzNpdUeJ6bnthBSU9XU7M7y82xPbN1RSyg1Iw7jRrGMguOxZJ0ULumtZPa0eRttjDB8DpKx2YYi-XFRM1lS0DRNtUdFRZWJIKYJVx-gOOp4UJeqcphrTVCVNdU5TfRaGjUwqWr-B-Of8P_QFYEZ5yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931864286</pqid></control><display><type>article</type><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><source>Springer Link</source><creator>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</creator><creatorcontrib>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</creatorcontrib><description>Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO 3 RR-to-NH 3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h −1 ·mg cat. −1 , and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO 2 . Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm −2 and a yield rate of 452 µg·h −1 ·mg cat. −1 . Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO 3 − species, and reduce the NO 3 RR-to-NH 3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH 3 electrosynthesis and nitrate removal.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5997-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysts ; Chemical reduction ; Chemistry and Materials Science ; Condensed Matter Physics ; Efficiency ; Materials Science ; Metal clusters ; Nanoclusters ; Nanosheets ; Nanotechnology ; Nitrate reduction ; Nitrate removal ; Nitrates ; Noble metals ; Nutrient removal ; Research Article ; Titanium dioxide ; Transition metals</subject><ispartof>Nano research, 2024-03, Vol.17 (3), p.1209-1216</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</citedby><cites>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Miaosen</creatorcontrib><creatorcontrib>Wei, Tianran</creatorcontrib><creatorcontrib>He, Jia</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Xijun</creatorcontrib><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO 3 RR-to-NH 3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h −1 ·mg cat. −1 , and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO 2 . Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm −2 and a yield rate of 452 µg·h −1 ·mg cat. −1 . Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO 3 − species, and reduce the NO 3 RR-to-NH 3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH 3 electrosynthesis and nitrate removal.</description><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Efficiency</subject><subject>Materials Science</subject><subject>Metal clusters</subject><subject>Nanoclusters</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nitrate reduction</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Noble metals</subject><subject>Nutrient removal</subject><subject>Research Article</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAyEQxTdGE2v1A3gj8YwCu13g2DT-S5r00jth2aGlaaECe6ifXupqPDmXmWTe783kVdU9JY-UEP6UKGO8wYTVeCYlx58X1YRKKTApdfk7U9ZcVzcp7QhpGW3EpLLzAXntg9kPKUNMSHuzDRF6FDxauxX73qYtQE7Ihoi2brPFYK0zDrw5IdiDyfFMDCa7AgWLvMtRZ0A5IH04BO_0bXVl9T7B3U-fVuuX5_XiDS9Xr--L-RKbmrYZdzNpdUeJ6bnthBSU9XU7M7y82xPbN1RSyg1Iw7jRrGMguOxZJ0ULumtZPa0eRttjDB8DpKx2YYi-XFRM1lS0DRNtUdFRZWJIKYJVx-gOOp4UJeqcphrTVCVNdU5TfRaGjUwqWr-B-Of8P_QFYEZ5yQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yang, Miaosen</creator><creator>Wei, Tianran</creator><creator>He, Jia</creator><creator>Liu, Qian</creator><creator>Feng, Ligang</creator><creator>Li, Hongyi</creator><creator>Luo, Jun</creator><creator>Liu, Xijun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240301</creationdate><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><author>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Efficiency</topic><topic>Materials Science</topic><topic>Metal clusters</topic><topic>Nanoclusters</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nitrate reduction</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Noble metals</topic><topic>Nutrient removal</topic><topic>Research Article</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Miaosen</creatorcontrib><creatorcontrib>Wei, Tianran</creatorcontrib><creatorcontrib>He, Jia</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Xijun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Miaosen</au><au>Wei, Tianran</au><au>He, Jia</au><au>Liu, Qian</au><au>Feng, Ligang</au><au>Li, Hongyi</au><au>Luo, Jun</au><au>Liu, Xijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>1209</spage><epage>1216</epage><pages>1209-1216</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO 3 RR-to-NH 3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h −1 ·mg cat. −1 , and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO 2 . Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm −2 and a yield rate of 452 µg·h −1 ·mg cat. −1 . Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO 3 − species, and reduce the NO 3 RR-to-NH 3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH 3 electrosynthesis and nitrate removal.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5997-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-03, Vol.17 (3), p.1209-1216
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2931864286
source Springer Link
subjects Ammonia
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysts
Chemical reduction
Chemistry and Materials Science
Condensed Matter Physics
Efficiency
Materials Science
Metal clusters
Nanoclusters
Nanosheets
Nanotechnology
Nitrate reduction
Nitrate removal
Nitrates
Noble metals
Nutrient removal
Research Article
Titanium dioxide
Transition metals
title Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%20nanoclusters%20anchored%20on%20TiO2%20nanosheets%20for%20high-efficiency%20electroreduction%20of%20nitrate%20to%20ammonia&rft.jtitle=Nano%20research&rft.au=Yang,%20Miaosen&rft.date=2024-03-01&rft.volume=17&rft.issue=3&rft.spage=1209&rft.epage=1216&rft.pages=1209-1216&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5997-z&rft_dat=%3Cproquest_cross%3E2931864286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931864286&rft_id=info:pmid/&rfr_iscdi=true