Loading…
Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia
Electrocatalytic nitrate reduction reaction (NO 3 RR) offers a unique rationale for green NH 3 synthesis, yet the lack of high-efficiency NO 3 RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO 2 nanosheets can efficiently catalyze the conversion of NO...
Saved in:
Published in: | Nano research 2024-03, Vol.17 (3), p.1209-1216 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623 |
container_end_page | 1216 |
container_issue | 3 |
container_start_page | 1209 |
container_title | Nano research |
container_volume | 17 |
creator | Yang, Miaosen Wei, Tianran He, Jia Liu, Qian Feng, Ligang Li, Hongyi Luo, Jun Liu, Xijun |
description | Electrocatalytic nitrate reduction reaction (NO
3
RR) offers a unique rationale for green NH
3
synthesis, yet the lack of high-efficiency NO
3
RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO
2
nanosheets can efficiently catalyze the conversion of NO
3
RR-to-NH
3
under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h
−1
·mg
cat.
−1
, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO
2
. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm
−2
and a yield rate of 452 µg·h
−1
·mg
cat.
−1
. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO
3
−
species, and reduce the NO
3
RR-to-NH
3
barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH
3
electrosynthesis and nitrate removal. |
doi_str_mv | 10.1007/s12274-023-5997-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931864286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931864286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxTdGE2v1A3gj8YwCu13g2DT-S5r00jth2aGlaaECe6ifXupqPDmXmWTe783kVdU9JY-UEP6UKGO8wYTVeCYlx58X1YRKKTApdfk7U9ZcVzcp7QhpGW3EpLLzAXntg9kPKUNMSHuzDRF6FDxauxX73qYtQE7Ihoi2brPFYK0zDrw5IdiDyfFMDCa7AgWLvMtRZ0A5IH04BO_0bXVl9T7B3U-fVuuX5_XiDS9Xr--L-RKbmrYZdzNpdUeJ6bnthBSU9XU7M7y82xPbN1RSyg1Iw7jRrGMguOxZJ0ULumtZPa0eRttjDB8DpKx2YYi-XFRM1lS0DRNtUdFRZWJIKYJVx-gOOp4UJeqcphrTVCVNdU5TfRaGjUwqWr-B-Of8P_QFYEZ5yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931864286</pqid></control><display><type>article</type><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><source>Springer Link</source><creator>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</creator><creatorcontrib>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</creatorcontrib><description>Electrocatalytic nitrate reduction reaction (NO
3
RR) offers a unique rationale for green NH
3
synthesis, yet the lack of high-efficiency NO
3
RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO
2
nanosheets can efficiently catalyze the conversion of NO
3
RR-to-NH
3
under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h
−1
·mg
cat.
−1
, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO
2
. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm
−2
and a yield rate of 452 µg·h
−1
·mg
cat.
−1
. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO
3
−
species, and reduce the NO
3
RR-to-NH
3
barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH
3
electrosynthesis and nitrate removal.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5997-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysts ; Chemical reduction ; Chemistry and Materials Science ; Condensed Matter Physics ; Efficiency ; Materials Science ; Metal clusters ; Nanoclusters ; Nanosheets ; Nanotechnology ; Nitrate reduction ; Nitrate removal ; Nitrates ; Noble metals ; Nutrient removal ; Research Article ; Titanium dioxide ; Transition metals</subject><ispartof>Nano research, 2024-03, Vol.17 (3), p.1209-1216</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</citedby><cites>FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Miaosen</creatorcontrib><creatorcontrib>Wei, Tianran</creatorcontrib><creatorcontrib>He, Jia</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Xijun</creatorcontrib><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Electrocatalytic nitrate reduction reaction (NO
3
RR) offers a unique rationale for green NH
3
synthesis, yet the lack of high-efficiency NO
3
RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO
2
nanosheets can efficiently catalyze the conversion of NO
3
RR-to-NH
3
under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h
−1
·mg
cat.
−1
, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO
2
. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm
−2
and a yield rate of 452 µg·h
−1
·mg
cat.
−1
. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO
3
−
species, and reduce the NO
3
RR-to-NH
3
barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH
3
electrosynthesis and nitrate removal.</description><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Efficiency</subject><subject>Materials Science</subject><subject>Metal clusters</subject><subject>Nanoclusters</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nitrate reduction</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Noble metals</subject><subject>Nutrient removal</subject><subject>Research Article</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAyEQxTdGE2v1A3gj8YwCu13g2DT-S5r00jth2aGlaaECe6ifXupqPDmXmWTe783kVdU9JY-UEP6UKGO8wYTVeCYlx58X1YRKKTApdfk7U9ZcVzcp7QhpGW3EpLLzAXntg9kPKUNMSHuzDRF6FDxauxX73qYtQE7Ihoi2brPFYK0zDrw5IdiDyfFMDCa7AgWLvMtRZ0A5IH04BO_0bXVl9T7B3U-fVuuX5_XiDS9Xr--L-RKbmrYZdzNpdUeJ6bnthBSU9XU7M7y82xPbN1RSyg1Iw7jRrGMguOxZJ0ULumtZPa0eRttjDB8DpKx2YYi-XFRM1lS0DRNtUdFRZWJIKYJVx-gOOp4UJeqcphrTVCVNdU5TfRaGjUwqWr-B-Of8P_QFYEZ5yQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yang, Miaosen</creator><creator>Wei, Tianran</creator><creator>He, Jia</creator><creator>Liu, Qian</creator><creator>Feng, Ligang</creator><creator>Li, Hongyi</creator><creator>Luo, Jun</creator><creator>Liu, Xijun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240301</creationdate><title>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</title><author>Yang, Miaosen ; Wei, Tianran ; He, Jia ; Liu, Qian ; Feng, Ligang ; Li, Hongyi ; Luo, Jun ; Liu, Xijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Efficiency</topic><topic>Materials Science</topic><topic>Metal clusters</topic><topic>Nanoclusters</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nitrate reduction</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Noble metals</topic><topic>Nutrient removal</topic><topic>Research Article</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Miaosen</creatorcontrib><creatorcontrib>Wei, Tianran</creatorcontrib><creatorcontrib>He, Jia</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Xijun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Miaosen</au><au>Wei, Tianran</au><au>He, Jia</au><au>Liu, Qian</au><au>Feng, Ligang</au><au>Li, Hongyi</au><au>Luo, Jun</au><au>Liu, Xijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>1209</spage><epage>1216</epage><pages>1209-1216</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Electrocatalytic nitrate reduction reaction (NO
3
RR) offers a unique rationale for green NH
3
synthesis, yet the lack of high-efficiency NO
3
RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO
2
nanosheets can efficiently catalyze the conversion of NO
3
RR-to-NH
3
under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 µg·h
−1
·mg
cat.
−1
, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO
2
. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm
−2
and a yield rate of 452 µg·h
−1
·mg
cat.
−1
. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO
3
−
species, and reduce the NO
3
RR-to-NH
3
barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH
3
electrosynthesis and nitrate removal.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5997-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-03, Vol.17 (3), p.1209-1216 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2931864286 |
source | Springer Link |
subjects | Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysts Chemical reduction Chemistry and Materials Science Condensed Matter Physics Efficiency Materials Science Metal clusters Nanoclusters Nanosheets Nanotechnology Nitrate reduction Nitrate removal Nitrates Noble metals Nutrient removal Research Article Titanium dioxide Transition metals |
title | Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%20nanoclusters%20anchored%20on%20TiO2%20nanosheets%20for%20high-efficiency%20electroreduction%20of%20nitrate%20to%20ammonia&rft.jtitle=Nano%20research&rft.au=Yang,%20Miaosen&rft.date=2024-03-01&rft.volume=17&rft.issue=3&rft.spage=1209&rft.epage=1216&rft.pages=1209-1216&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5997-z&rft_dat=%3Cproquest_cross%3E2931864286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b59fab10cd7fb89812d365c7006d0fd419117ce9c27ca2b2e879d2b986eab623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931864286&rft_id=info:pmid/&rfr_iscdi=true |