Loading…

Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force

The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution whic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-02, Vol.2701 (1), p.12120
Main Authors: Aal-Rkhais, Habeeb A., Qasim, Ruba H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23
container_end_page
container_issue 1
container_start_page 12120
container_title Journal of physics. Conference series
container_volume 2701
creator Aal-Rkhais, Habeeb A.
Qasim, Ruba H.
description The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.
doi_str_mv 10.1088/1742-6596/2701/1/012120
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2932181746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932181746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKufwYDndfPYR_ZYilqhIIKewySb0JS2SbPbSr-9WVfq0bnMMDP_efwQuqfkkRIhcloXLKvKpspZTWhOc0IZZeQCTc6Vy3MsxDW66bo1ITxZPUHvs-60Db3vncbKrODo_CFi6yMGHCCC8ptUCdkSwga0gx02-wP0zu_wl-tXOCWgPRr9k0kybW7RlYVNZ-5-_RR9Pj99zBfZ8u3ldT5bZprxhmRKtCBKResSlLBgWyUaXRUEqhK4ILxl6fDSqhIqxUlV1KqxSghRmKYBBYxP0cM4N0S_P5iul-t0-i6tlKzhjIr0cpW66rFLR9910VgZottCPElK5MBPDmTkQEkO_CSVI7-k5KPS-fA3-j_VNycecic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932181746</pqid></control><display><type>article</type><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</creator><creatorcontrib>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</creatorcontrib><description>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2701/1/012120</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Advection ; Asymptotic properties ; Cauchy problems ; Conservation laws ; Degenerate parabolic PDEs ; interfaces ; Laplace equation ; local weak solution ; Mathematical analysis ; p-Laplacian equation ; Qualitative analysis ; Rescaling ; Self-similarity</subject><ispartof>Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12120</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932181746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aal-Rkhais, Habeeb A.</creatorcontrib><creatorcontrib>Qasim, Ruba H.</creatorcontrib><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</description><subject>Advection</subject><subject>Asymptotic properties</subject><subject>Cauchy problems</subject><subject>Conservation laws</subject><subject>Degenerate parabolic PDEs</subject><subject>interfaces</subject><subject>Laplace equation</subject><subject>local weak solution</subject><subject>Mathematical analysis</subject><subject>p-Laplacian equation</subject><subject>Qualitative analysis</subject><subject>Rescaling</subject><subject>Self-similarity</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkEtLAzEQx4MoWKufwYDndfPYR_ZYilqhIIKewySb0JS2SbPbSr-9WVfq0bnMMDP_efwQuqfkkRIhcloXLKvKpspZTWhOc0IZZeQCTc6Vy3MsxDW66bo1ITxZPUHvs-60Db3vncbKrODo_CFi6yMGHCCC8ptUCdkSwga0gx02-wP0zu_wl-tXOCWgPRr9k0kybW7RlYVNZ-5-_RR9Pj99zBfZ8u3ldT5bZprxhmRKtCBKResSlLBgWyUaXRUEqhK4ILxl6fDSqhIqxUlV1KqxSghRmKYBBYxP0cM4N0S_P5iul-t0-i6tlKzhjIr0cpW66rFLR9910VgZottCPElK5MBPDmTkQEkO_CSVI7-k5KPS-fA3-j_VNycecic</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Aal-Rkhais, Habeeb A.</creator><creator>Qasim, Ruba H.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240201</creationdate><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><author>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection</topic><topic>Asymptotic properties</topic><topic>Cauchy problems</topic><topic>Conservation laws</topic><topic>Degenerate parabolic PDEs</topic><topic>interfaces</topic><topic>Laplace equation</topic><topic>local weak solution</topic><topic>Mathematical analysis</topic><topic>p-Laplacian equation</topic><topic>Qualitative analysis</topic><topic>Rescaling</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aal-Rkhais, Habeeb A.</creatorcontrib><creatorcontrib>Qasim, Ruba H.</creatorcontrib><collection>Institute of Physics - IOP eJournals - Open Access</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aal-Rkhais, Habeeb A.</au><au>Qasim, Ruba H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>2701</volume><issue>1</issue><spage>12120</spage><pages>12120-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2701/1/012120</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12120
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2932181746
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Advection
Asymptotic properties
Cauchy problems
Conservation laws
Degenerate parabolic PDEs
interfaces
Laplace equation
local weak solution
Mathematical analysis
p-Laplacian equation
Qualitative analysis
Rescaling
Self-similarity
title Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20behaviour%20for%20a%20parabolic%20p-Laplacian%20equation%20with%20an%20advection%20force&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Aal-Rkhais,%20Habeeb%20A.&rft.date=2024-02-01&rft.volume=2701&rft.issue=1&rft.spage=12120&rft.pages=12120-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2701/1/012120&rft_dat=%3Cproquest_iop_j%3E2932181746%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932181746&rft_id=info:pmid/&rfr_iscdi=true