Loading…
Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force
The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution whic...
Saved in:
Published in: | Journal of physics. Conference series 2024-02, Vol.2701 (1), p.12120 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23 |
container_end_page | |
container_issue | 1 |
container_start_page | 12120 |
container_title | Journal of physics. Conference series |
container_volume | 2701 |
creator | Aal-Rkhais, Habeeb A. Qasim, Ruba H. |
description | The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions. |
doi_str_mv | 10.1088/1742-6596/2701/1/012120 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2932181746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932181746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKufwYDndfPYR_ZYilqhIIKewySb0JS2SbPbSr-9WVfq0bnMMDP_efwQuqfkkRIhcloXLKvKpspZTWhOc0IZZeQCTc6Vy3MsxDW66bo1ITxZPUHvs-60Db3vncbKrODo_CFi6yMGHCCC8ptUCdkSwga0gx02-wP0zu_wl-tXOCWgPRr9k0kybW7RlYVNZ-5-_RR9Pj99zBfZ8u3ldT5bZprxhmRKtCBKResSlLBgWyUaXRUEqhK4ILxl6fDSqhIqxUlV1KqxSghRmKYBBYxP0cM4N0S_P5iul-t0-i6tlKzhjIr0cpW66rFLR9910VgZottCPElK5MBPDmTkQEkO_CSVI7-k5KPS-fA3-j_VNycecic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932181746</pqid></control><display><type>article</type><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</creator><creatorcontrib>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</creatorcontrib><description>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2701/1/012120</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Advection ; Asymptotic properties ; Cauchy problems ; Conservation laws ; Degenerate parabolic PDEs ; interfaces ; Laplace equation ; local weak solution ; Mathematical analysis ; p-Laplacian equation ; Qualitative analysis ; Rescaling ; Self-similarity</subject><ispartof>Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12120</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932181746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aal-Rkhais, Habeeb A.</creatorcontrib><creatorcontrib>Qasim, Ruba H.</creatorcontrib><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</description><subject>Advection</subject><subject>Asymptotic properties</subject><subject>Cauchy problems</subject><subject>Conservation laws</subject><subject>Degenerate parabolic PDEs</subject><subject>interfaces</subject><subject>Laplace equation</subject><subject>local weak solution</subject><subject>Mathematical analysis</subject><subject>p-Laplacian equation</subject><subject>Qualitative analysis</subject><subject>Rescaling</subject><subject>Self-similarity</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkEtLAzEQx4MoWKufwYDndfPYR_ZYilqhIIKewySb0JS2SbPbSr-9WVfq0bnMMDP_efwQuqfkkRIhcloXLKvKpspZTWhOc0IZZeQCTc6Vy3MsxDW66bo1ITxZPUHvs-60Db3vncbKrODo_CFi6yMGHCCC8ptUCdkSwga0gx02-wP0zu_wl-tXOCWgPRr9k0kybW7RlYVNZ-5-_RR9Pj99zBfZ8u3ldT5bZprxhmRKtCBKResSlLBgWyUaXRUEqhK4ILxl6fDSqhIqxUlV1KqxSghRmKYBBYxP0cM4N0S_P5iul-t0-i6tlKzhjIr0cpW66rFLR9910VgZottCPElK5MBPDmTkQEkO_CSVI7-k5KPS-fA3-j_VNycecic</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Aal-Rkhais, Habeeb A.</creator><creator>Qasim, Ruba H.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240201</creationdate><title>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</title><author>Aal-Rkhais, Habeeb A. ; Qasim, Ruba H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection</topic><topic>Asymptotic properties</topic><topic>Cauchy problems</topic><topic>Conservation laws</topic><topic>Degenerate parabolic PDEs</topic><topic>interfaces</topic><topic>Laplace equation</topic><topic>local weak solution</topic><topic>Mathematical analysis</topic><topic>p-Laplacian equation</topic><topic>Qualitative analysis</topic><topic>Rescaling</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aal-Rkhais, Habeeb A.</creatorcontrib><creatorcontrib>Qasim, Ruba H.</creatorcontrib><collection>Institute of Physics - IOP eJournals - Open Access</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aal-Rkhais, Habeeb A.</au><au>Qasim, Ruba H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>2701</volume><issue>1</issue><spage>12120</spage><pages>12120-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The rescaling method is presented to allow us establishing the interface functions and the nonnegative local solutions to the evolution of nonlinear degenerate parabolic p-Laplacian process with conservation laws that are posed in one-dimensional space. This equation has a self-similar solution which represents the main feature of this work. The Cauchy problem (CP) for this equation with specific restrictions in the range of parameters and the negative advection coefficient is considered. In this work, there are several regions to discuss the qualitative analysis for the local weak solutions and the asymptotic interfaces in the irregular domains. The dominating of the advection force over the p-Laplacian type diffusion will appear clearly in these regions. Moreover, the solutions of the CP for the degenerate parabolic p-Laplacian advection equations are asymptotically equal to the solutions of advection equations under some restrictions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2701/1/012120</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12120 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2932181746 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Advection Asymptotic properties Cauchy problems Conservation laws Degenerate parabolic PDEs interfaces Laplace equation local weak solution Mathematical analysis p-Laplacian equation Qualitative analysis Rescaling Self-similarity |
title | Asymptotic behaviour for a parabolic p-Laplacian equation with an advection force |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20behaviour%20for%20a%20parabolic%20p-Laplacian%20equation%20with%20an%20advection%20force&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Aal-Rkhais,%20Habeeb%20A.&rft.date=2024-02-01&rft.volume=2701&rft.issue=1&rft.spage=12120&rft.pages=12120-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2701/1/012120&rft_dat=%3Cproquest_iop_j%3E2932181746%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2390-b8da85b175ab8fafdb89c640a65a3803d25965fb5a6b30647b9fb8884e99aba23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932181746&rft_id=info:pmid/&rfr_iscdi=true |