Loading…
Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging
Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-...
Saved in:
Published in: | SN computer science 2022-05, Vol.3 (3), p.219, Article 219 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23 |
container_end_page | |
container_issue | 3 |
container_start_page | 219 |
container_title | SN computer science |
container_volume | 3 |
creator | Vesala, G. T. Ghali, V. S. Subhani, S. Vijaya Lakshmi, A. Naik, R. B. |
description | Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map. |
doi_str_mv | 10.1007/s42979-022-01055-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932275894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932275894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhSMEElXbP8DJEufAxHbs5LgsFCoVEGoruFmz9mSbkrWLHbfa_o3-YUwWiRunGT29783oVdWrBt40APptkrzXfQ2c19BA29b6WXXElWrqrgf9fNl53fftj5fVaUq3AMBbkFK1R9XTOvj7MOV5DJ59oRxxKmN-CPFnYu8wkWOrPIcdzqNll3mTchzQElv5ok179p5msguM3rH1DUa0M8XxERdx9OxbRhcX_CzSr0ze7tnn4PKEcwm_uqFYgth3vCd2vsPt6Lcn1YsBp0Snf-dxdX324Wr9qb74-vF8vbqobaOkrqlB0XWtdALEBjbSKYGcO-CAUsJAMHTKKtVbRZ213OEgSCB02nENneXiuHp9yL2LoTyWZnMbcvTlpOG94Fy3XS-Lix9cNoaUIg3mLo47jHvTgPnTvzn0b0r_Zunf6AKJA5SK2W8p_ov-D_UbiJCK2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932275894</pqid></control><display><type>article</type><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><source>Springer Nature</source><creator>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</creator><creatorcontrib>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</creatorcontrib><description>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-022-01055-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Machine Vision and Augmented Intelligence ; Anomalies ; Artificial intelligence ; Artificial neural networks ; Automation ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Classification ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Data processing ; Data Structures and Information Theory ; Deep learning ; Defects ; Fiber reinforced polymers ; Heat ; Hole defects ; Information Systems and Communication Service ; Localization ; Machine learning ; Neural networks ; Nondestructive testing ; Original Research ; Pattern Recognition and Graphics ; Performance measurement ; Quality assessment ; Semantics ; Signal to noise ratio ; Software Engineering/Programming and Operating Systems ; Thermal imaging ; Thermal wave imaging ; Thermography ; Vision ; Z transforms</subject><ispartof>SN computer science, 2022-05, Vol.3 (3), p.219, Article 219</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</citedby><cites>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</cites><orcidid>0000-0003-4938-3893 ; 0000-0001-8064-6968 ; 0000-0001-5794-9936 ; 0000-0002-4371-9627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Subhani, S.</creatorcontrib><creatorcontrib>Vijaya Lakshmi, A.</creatorcontrib><creatorcontrib>Naik, R. B.</creatorcontrib><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</description><subject>Advances in Machine Vision and Augmented Intelligence</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Fiber reinforced polymers</subject><subject>Heat</subject><subject>Hole defects</subject><subject>Information Systems and Communication Service</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance measurement</subject><subject>Quality assessment</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Thermal imaging</subject><subject>Thermal wave imaging</subject><subject>Thermography</subject><subject>Vision</subject><subject>Z transforms</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhSMEElXbP8DJEufAxHbs5LgsFCoVEGoruFmz9mSbkrWLHbfa_o3-YUwWiRunGT29783oVdWrBt40APptkrzXfQ2c19BA29b6WXXElWrqrgf9fNl53fftj5fVaUq3AMBbkFK1R9XTOvj7MOV5DJ59oRxxKmN-CPFnYu8wkWOrPIcdzqNll3mTchzQElv5ok179p5msguM3rH1DUa0M8XxERdx9OxbRhcX_CzSr0ze7tnn4PKEcwm_uqFYgth3vCd2vsPt6Lcn1YsBp0Snf-dxdX324Wr9qb74-vF8vbqobaOkrqlB0XWtdALEBjbSKYGcO-CAUsJAMHTKKtVbRZ213OEgSCB02nENneXiuHp9yL2LoTyWZnMbcvTlpOG94Fy3XS-Lix9cNoaUIg3mLo47jHvTgPnTvzn0b0r_Zunf6AKJA5SK2W8p_ov-D_UbiJCK2A</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Vesala, G. T.</creator><creator>Ghali, V. S.</creator><creator>Subhani, S.</creator><creator>Vijaya Lakshmi, A.</creator><creator>Naik, R. B.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4938-3893</orcidid><orcidid>https://orcid.org/0000-0001-8064-6968</orcidid><orcidid>https://orcid.org/0000-0001-5794-9936</orcidid><orcidid>https://orcid.org/0000-0002-4371-9627</orcidid></search><sort><creationdate>20220501</creationdate><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><author>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advances in Machine Vision and Augmented Intelligence</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Fiber reinforced polymers</topic><topic>Heat</topic><topic>Hole defects</topic><topic>Information Systems and Communication Service</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance measurement</topic><topic>Quality assessment</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Thermal imaging</topic><topic>Thermal wave imaging</topic><topic>Thermography</topic><topic>Vision</topic><topic>Z transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Subhani, S.</creatorcontrib><creatorcontrib>Vijaya Lakshmi, A.</creatorcontrib><creatorcontrib>Naik, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vesala, G. T.</au><au>Ghali, V. S.</au><au>Subhani, S.</au><au>Vijaya Lakshmi, A.</au><au>Naik, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>3</volume><issue>3</issue><spage>219</spage><pages>219-</pages><artnum>219</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-022-01055-7</doi><orcidid>https://orcid.org/0000-0003-4938-3893</orcidid><orcidid>https://orcid.org/0000-0001-8064-6968</orcidid><orcidid>https://orcid.org/0000-0001-5794-9936</orcidid><orcidid>https://orcid.org/0000-0002-4371-9627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-995X |
ispartof | SN computer science, 2022-05, Vol.3 (3), p.219, Article 219 |
issn | 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2932275894 |
source | Springer Nature |
subjects | Advances in Machine Vision and Augmented Intelligence Anomalies Artificial intelligence Artificial neural networks Automation Carbon fiber reinforced plastics Carbon fiber reinforcement Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks Computer vision Data processing Data Structures and Information Theory Deep learning Defects Fiber reinforced polymers Heat Hole defects Information Systems and Communication Service Localization Machine learning Neural networks Nondestructive testing Original Research Pattern Recognition and Graphics Performance measurement Quality assessment Semantics Signal to noise ratio Software Engineering/Programming and Operating Systems Thermal imaging Thermal wave imaging Thermography Vision Z transforms |
title | Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20Neural%20Networks%20Based%20Automatic%20Subsurface%20Anomaly%20Detection%20and%20Characterization%20in%20Quadratic%20Frequency%20Modulated%20Thermal%20Wave%20Imaging&rft.jtitle=SN%20computer%20science&rft.au=Vesala,%20G.%20T.&rft.date=2022-05-01&rft.volume=3&rft.issue=3&rft.spage=219&rft.pages=219-&rft.artnum=219&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-022-01055-7&rft_dat=%3Cproquest_cross%3E2932275894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932275894&rft_id=info:pmid/&rfr_iscdi=true |