Loading…

Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging

Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-...

Full description

Saved in:
Bibliographic Details
Published in:SN computer science 2022-05, Vol.3 (3), p.219, Article 219
Main Authors: Vesala, G. T., Ghali, V. S., Subhani, S., Vijaya Lakshmi, A., Naik, R. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23
cites cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23
container_end_page
container_issue 3
container_start_page 219
container_title SN computer science
container_volume 3
creator Vesala, G. T.
Ghali, V. S.
Subhani, S.
Vijaya Lakshmi, A.
Naik, R. B.
description Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.
doi_str_mv 10.1007/s42979-022-01055-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932275894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932275894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhSMEElXbP8DJEufAxHbs5LgsFCoVEGoruFmz9mSbkrWLHbfa_o3-YUwWiRunGT29783oVdWrBt40APptkrzXfQ2c19BA29b6WXXElWrqrgf9fNl53fftj5fVaUq3AMBbkFK1R9XTOvj7MOV5DJ59oRxxKmN-CPFnYu8wkWOrPIcdzqNll3mTchzQElv5ok179p5msguM3rH1DUa0M8XxERdx9OxbRhcX_CzSr0ze7tnn4PKEcwm_uqFYgth3vCd2vsPt6Lcn1YsBp0Snf-dxdX324Wr9qb74-vF8vbqobaOkrqlB0XWtdALEBjbSKYGcO-CAUsJAMHTKKtVbRZ213OEgSCB02nENneXiuHp9yL2LoTyWZnMbcvTlpOG94Fy3XS-Lix9cNoaUIg3mLo47jHvTgPnTvzn0b0r_Zunf6AKJA5SK2W8p_ov-D_UbiJCK2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932275894</pqid></control><display><type>article</type><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><source>Springer Nature</source><creator>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</creator><creatorcontrib>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</creatorcontrib><description>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-022-01055-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Machine Vision and Augmented Intelligence ; Anomalies ; Artificial intelligence ; Artificial neural networks ; Automation ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Classification ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Data processing ; Data Structures and Information Theory ; Deep learning ; Defects ; Fiber reinforced polymers ; Heat ; Hole defects ; Information Systems and Communication Service ; Localization ; Machine learning ; Neural networks ; Nondestructive testing ; Original Research ; Pattern Recognition and Graphics ; Performance measurement ; Quality assessment ; Semantics ; Signal to noise ratio ; Software Engineering/Programming and Operating Systems ; Thermal imaging ; Thermal wave imaging ; Thermography ; Vision ; Z transforms</subject><ispartof>SN computer science, 2022-05, Vol.3 (3), p.219, Article 219</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</citedby><cites>FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</cites><orcidid>0000-0003-4938-3893 ; 0000-0001-8064-6968 ; 0000-0001-5794-9936 ; 0000-0002-4371-9627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Subhani, S.</creatorcontrib><creatorcontrib>Vijaya Lakshmi, A.</creatorcontrib><creatorcontrib>Naik, R. B.</creatorcontrib><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</description><subject>Advances in Machine Vision and Augmented Intelligence</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Fiber reinforced polymers</subject><subject>Heat</subject><subject>Hole defects</subject><subject>Information Systems and Communication Service</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance measurement</subject><subject>Quality assessment</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Thermal imaging</subject><subject>Thermal wave imaging</subject><subject>Thermography</subject><subject>Vision</subject><subject>Z transforms</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhSMEElXbP8DJEufAxHbs5LgsFCoVEGoruFmz9mSbkrWLHbfa_o3-YUwWiRunGT29783oVdWrBt40APptkrzXfQ2c19BA29b6WXXElWrqrgf9fNl53fftj5fVaUq3AMBbkFK1R9XTOvj7MOV5DJ59oRxxKmN-CPFnYu8wkWOrPIcdzqNll3mTchzQElv5ok179p5msguM3rH1DUa0M8XxERdx9OxbRhcX_CzSr0ze7tnn4PKEcwm_uqFYgth3vCd2vsPt6Lcn1YsBp0Snf-dxdX324Wr9qb74-vF8vbqobaOkrqlB0XWtdALEBjbSKYGcO-CAUsJAMHTKKtVbRZ213OEgSCB02nENneXiuHp9yL2LoTyWZnMbcvTlpOG94Fy3XS-Lix9cNoaUIg3mLo47jHvTgPnTvzn0b0r_Zunf6AKJA5SK2W8p_ov-D_UbiJCK2A</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Vesala, G. T.</creator><creator>Ghali, V. S.</creator><creator>Subhani, S.</creator><creator>Vijaya Lakshmi, A.</creator><creator>Naik, R. B.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4938-3893</orcidid><orcidid>https://orcid.org/0000-0001-8064-6968</orcidid><orcidid>https://orcid.org/0000-0001-5794-9936</orcidid><orcidid>https://orcid.org/0000-0002-4371-9627</orcidid></search><sort><creationdate>20220501</creationdate><title>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</title><author>Vesala, G. T. ; Ghali, V. S. ; Subhani, S. ; Vijaya Lakshmi, A. ; Naik, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advances in Machine Vision and Augmented Intelligence</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Fiber reinforced polymers</topic><topic>Heat</topic><topic>Hole defects</topic><topic>Information Systems and Communication Service</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance measurement</topic><topic>Quality assessment</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Thermal imaging</topic><topic>Thermal wave imaging</topic><topic>Thermography</topic><topic>Vision</topic><topic>Z transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Subhani, S.</creatorcontrib><creatorcontrib>Vijaya Lakshmi, A.</creatorcontrib><creatorcontrib>Naik, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vesala, G. T.</au><au>Ghali, V. S.</au><au>Subhani, S.</au><au>Vijaya Lakshmi, A.</au><au>Naik, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>3</volume><issue>3</issue><spage>219</spage><pages>219-</pages><artnum>219</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Recent trends in thermal non-destructive testing focusing on artificial intelligence and various deep learning architectures have been investigated for quality assessment of different materials. The present work introduces three famous computer vision models (AlexNet, GoogleNet and VggNet) with one-dimensional convolution layers for defect detection for material inspected by quadratic frequency modulated thermal wave imaging. These models employ sequential convolution operations and pooling on temporal thermal profiles and extract deep features further to classify defect and sound regions in the test sample. The three deep learning models are trained from scratch with the experimental thermographic data of a carbon fiber reinforced polymer (CFRP) specimen with artificially simulated flat bottom hole defects of different sizes at varying depths. The performance metrics conclude that AlexNet presents high testing accuracy and F-score of 98.92% and 0.954 resulting in less deviation to the actual labels favoring enhanced defect signal-to-noise ratio with less computation time in CPU-based hardware. Further, the depth of the detected defect was quantified using a recently introduced quantification model using the chirp-z transform-based phase analysis. The estimated depths are rearranged in the respective locations and visualized the depth map.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-022-01055-7</doi><orcidid>https://orcid.org/0000-0003-4938-3893</orcidid><orcidid>https://orcid.org/0000-0001-8064-6968</orcidid><orcidid>https://orcid.org/0000-0001-5794-9936</orcidid><orcidid>https://orcid.org/0000-0002-4371-9627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2022-05, Vol.3 (3), p.219, Article 219
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2932275894
source Springer Nature
subjects Advances in Machine Vision and Augmented Intelligence
Anomalies
Artificial intelligence
Artificial neural networks
Automation
Carbon fiber reinforced plastics
Carbon fiber reinforcement
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Data processing
Data Structures and Information Theory
Deep learning
Defects
Fiber reinforced polymers
Heat
Hole defects
Information Systems and Communication Service
Localization
Machine learning
Neural networks
Nondestructive testing
Original Research
Pattern Recognition and Graphics
Performance measurement
Quality assessment
Semantics
Signal to noise ratio
Software Engineering/Programming and Operating Systems
Thermal imaging
Thermal wave imaging
Thermography
Vision
Z transforms
title Convolution Neural Networks Based Automatic Subsurface Anomaly Detection and Characterization in Quadratic Frequency Modulated Thermal Wave Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20Neural%20Networks%20Based%20Automatic%20Subsurface%20Anomaly%20Detection%20and%20Characterization%20in%20Quadratic%20Frequency%20Modulated%20Thermal%20Wave%20Imaging&rft.jtitle=SN%20computer%20science&rft.au=Vesala,%20G.%20T.&rft.date=2022-05-01&rft.volume=3&rft.issue=3&rft.spage=219&rft.pages=219-&rft.artnum=219&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-022-01055-7&rft_dat=%3Cproquest_cross%3E2932275894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1647-e1a38854d303b0b4d63a22d020a440fe0f86c669c6e8cc2daf3e3a087d2708c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932275894&rft_id=info:pmid/&rfr_iscdi=true