Loading…

Symbolic Listings as Computation

We propose an algebraic model of computation which formally relates symbolic listings, complexity of Boolean functions, and low depth arithmetic circuit complexity. In this model algorithms are arithmetic formula expressing symbolic listings of YES instances of Boolean functions, and computation is...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Hamilton Sawczuk, Gnang, Edinah
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hamilton Sawczuk
Gnang, Edinah
description We propose an algebraic model of computation which formally relates symbolic listings, complexity of Boolean functions, and low depth arithmetic circuit complexity. In this model algorithms are arithmetic formula expressing symbolic listings of YES instances of Boolean functions, and computation is executed via partial differential operators. We consider the Chow rank of an arithmetic formula as a measure of complexity and establish the Chow rank of multilinear polynomials with totally non-overlapping monomial support. We also provide Chow rank non-decreasing transformations from sets of graphs to sets of functional graphs.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932314088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932314088</sourcerecordid><originalsourceid>FETCH-proquest_journals_29323140883</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCK7MTcrPyUxW8MksLsnMSy9WSCxWcM7PLSgtSSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjI2NDEwMLC2PiVAEAC4otSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932314088</pqid></control><display><type>article</type><title>Symbolic Listings as Computation</title><source>Publicly Available Content Database</source><creator>Hamilton Sawczuk ; Gnang, Edinah</creator><creatorcontrib>Hamilton Sawczuk ; Gnang, Edinah</creatorcontrib><description>We propose an algebraic model of computation which formally relates symbolic listings, complexity of Boolean functions, and low depth arithmetic circuit complexity. In this model algorithms are arithmetic formula expressing symbolic listings of YES instances of Boolean functions, and computation is executed via partial differential operators. We consider the Chow rank of an arithmetic formula as a measure of complexity and establish the Chow rank of multilinear polynomials with totally non-overlapping monomial support. We also provide Chow rank non-decreasing transformations from sets of graphs to sets of functional graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Arithmetic ; Boolean functions ; Complexity ; Computation ; Differential equations ; Graphs ; Mathematical analysis ; Operators (mathematics) ; Polynomials</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932314088?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Hamilton Sawczuk</creatorcontrib><creatorcontrib>Gnang, Edinah</creatorcontrib><title>Symbolic Listings as Computation</title><title>arXiv.org</title><description>We propose an algebraic model of computation which formally relates symbolic listings, complexity of Boolean functions, and low depth arithmetic circuit complexity. In this model algorithms are arithmetic formula expressing symbolic listings of YES instances of Boolean functions, and computation is executed via partial differential operators. We consider the Chow rank of an arithmetic formula as a measure of complexity and establish the Chow rank of multilinear polynomials with totally non-overlapping monomial support. We also provide Chow rank non-decreasing transformations from sets of graphs to sets of functional graphs.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Boolean functions</subject><subject>Complexity</subject><subject>Computation</subject><subject>Differential equations</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCK7MTcrPyUxW8MksLsnMSy9WSCxWcM7PLSgtSSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjI2NDEwMLC2PiVAEAC4otSw</recordid><startdate>20240324</startdate><enddate>20240324</enddate><creator>Hamilton Sawczuk</creator><creator>Gnang, Edinah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240324</creationdate><title>Symbolic Listings as Computation</title><author>Hamilton Sawczuk ; Gnang, Edinah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29323140883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Boolean functions</topic><topic>Complexity</topic><topic>Computation</topic><topic>Differential equations</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamilton Sawczuk</creatorcontrib><creatorcontrib>Gnang, Edinah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton Sawczuk</au><au>Gnang, Edinah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symbolic Listings as Computation</atitle><jtitle>arXiv.org</jtitle><date>2024-03-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose an algebraic model of computation which formally relates symbolic listings, complexity of Boolean functions, and low depth arithmetic circuit complexity. In this model algorithms are arithmetic formula expressing symbolic listings of YES instances of Boolean functions, and computation is executed via partial differential operators. We consider the Chow rank of an arithmetic formula as a measure of complexity and establish the Chow rank of multilinear polynomials with totally non-overlapping monomial support. We also provide Chow rank non-decreasing transformations from sets of graphs to sets of functional graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2932314088
source Publicly Available Content Database
subjects Algorithms
Arithmetic
Boolean functions
Complexity
Computation
Differential equations
Graphs
Mathematical analysis
Operators (mathematics)
Polynomials
title Symbolic Listings as Computation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symbolic%20Listings%20as%20Computation&rft.jtitle=arXiv.org&rft.au=Hamilton%20Sawczuk&rft.date=2024-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2932314088%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29323140883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932314088&rft_id=info:pmid/&rfr_iscdi=true