Loading…

IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning

State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Nieuwenhuis, Robert, Oliveras, Albert, Rodriguez-Carbonell, Enric
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nieuwenhuis, Robert
Oliveras, Albert
Rodriguez-Carbonell, Enric
description State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.
doi_str_mv 10.48550/arxiv.2402.15522
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932314288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932314288</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3</originalsourceid><addsrcrecordid>eNotjV1LwzAUhoMgOOZ-gHcFr1NPTpI29U7mxwoFBXc_TpukZGyppt3Qf29Frx5eeHhexm4E5MpoDXeUvsI5RwWYC60RL9gCpRTcKMQrthrHPQBgUaLWcsHqOk7vNN1nM13vUtaE6Chlb2noEx2PIfZZ-52th-gPoZv4YwpnF3_3OCUKceLNrMdZu2aXng6jW_1zybbPT9v1hjevL_X6oeGk0XAC0SoA4yrtsKMSKklt6Z3VBbjSWtTWC11SawlJKyNt57u2A0ui8CC9XLLbv-xHGj5Pbpx2--GU4vy4w0qiFAqNkT-U4E7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932314288</pqid></control><display><type>article</type><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><source>Publicly Available Content Database</source><creator>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</creator><creatorcontrib>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</creatorcontrib><description>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.15522</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integer programming ; Learning ; Linear programming</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932314288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Nieuwenhuis, Robert</creatorcontrib><creatorcontrib>Oliveras, Albert</creatorcontrib><creatorcontrib>Rodriguez-Carbonell, Enric</creatorcontrib><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><title>arXiv.org</title><description>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</description><subject>Integer programming</subject><subject>Learning</subject><subject>Linear programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAUhoMgOOZ-gHcFr1NPTpI29U7mxwoFBXc_TpukZGyppt3Qf29Frx5eeHhexm4E5MpoDXeUvsI5RwWYC60RL9gCpRTcKMQrthrHPQBgUaLWcsHqOk7vNN1nM13vUtaE6Chlb2noEx2PIfZZ-52th-gPoZv4YwpnF3_3OCUKceLNrMdZu2aXng6jW_1zybbPT9v1hjevL_X6oeGk0XAC0SoA4yrtsKMSKklt6Z3VBbjSWtTWC11SawlJKyNt57u2A0ui8CC9XLLbv-xHGj5Pbpx2--GU4vy4w0qiFAqNkT-U4E7s</recordid><startdate>20240216</startdate><enddate>20240216</enddate><creator>Nieuwenhuis, Robert</creator><creator>Oliveras, Albert</creator><creator>Rodriguez-Carbonell, Enric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240216</creationdate><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><author>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Integer programming</topic><topic>Learning</topic><topic>Linear programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Nieuwenhuis, Robert</creatorcontrib><creatorcontrib>Oliveras, Albert</creatorcontrib><creatorcontrib>Rodriguez-Carbonell, Enric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieuwenhuis, Robert</au><au>Oliveras, Albert</au><au>Rodriguez-Carbonell, Enric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-02-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.15522</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2932314288
source Publicly Available Content Database
subjects Integer programming
Learning
Linear programming
title IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IntSat:%20Integer%20Linear%20Programming%20by%20Conflict-Driven%20Constraint-Learning&rft.jtitle=arXiv.org&rft.au=Nieuwenhuis,%20Robert&rft.date=2024-02-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.15522&rft_dat=%3Cproquest%3E2932314288%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932314288&rft_id=info:pmid/&rfr_iscdi=true