Loading…
IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning
State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In th...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nieuwenhuis, Robert Oliveras, Albert Rodriguez-Carbonell, Enric |
description | State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving. |
doi_str_mv | 10.48550/arxiv.2402.15522 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932314288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932314288</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3</originalsourceid><addsrcrecordid>eNotjV1LwzAUhoMgOOZ-gHcFr1NPTpI29U7mxwoFBXc_TpukZGyppt3Qf29Frx5eeHhexm4E5MpoDXeUvsI5RwWYC60RL9gCpRTcKMQrthrHPQBgUaLWcsHqOk7vNN1nM13vUtaE6Chlb2noEx2PIfZZ-52th-gPoZv4YwpnF3_3OCUKceLNrMdZu2aXng6jW_1zybbPT9v1hjevL_X6oeGk0XAC0SoA4yrtsKMSKklt6Z3VBbjSWtTWC11SawlJKyNt57u2A0ui8CC9XLLbv-xHGj5Pbpx2--GU4vy4w0qiFAqNkT-U4E7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932314288</pqid></control><display><type>article</type><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><source>Publicly Available Content Database</source><creator>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</creator><creatorcontrib>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</creatorcontrib><description>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2402.15522</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integer programming ; Learning ; Linear programming</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932314288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Nieuwenhuis, Robert</creatorcontrib><creatorcontrib>Oliveras, Albert</creatorcontrib><creatorcontrib>Rodriguez-Carbonell, Enric</creatorcontrib><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><title>arXiv.org</title><description>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</description><subject>Integer programming</subject><subject>Learning</subject><subject>Linear programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAUhoMgOOZ-gHcFr1NPTpI29U7mxwoFBXc_TpukZGyppt3Qf29Frx5eeHhexm4E5MpoDXeUvsI5RwWYC60RL9gCpRTcKMQrthrHPQBgUaLWcsHqOk7vNN1nM13vUtaE6Chlb2noEx2PIfZZ-52th-gPoZv4YwpnF3_3OCUKceLNrMdZu2aXng6jW_1zybbPT9v1hjevL_X6oeGk0XAC0SoA4yrtsKMSKklt6Z3VBbjSWtTWC11SawlJKyNt57u2A0ui8CC9XLLbv-xHGj5Pbpx2--GU4vy4w0qiFAqNkT-U4E7s</recordid><startdate>20240216</startdate><enddate>20240216</enddate><creator>Nieuwenhuis, Robert</creator><creator>Oliveras, Albert</creator><creator>Rodriguez-Carbonell, Enric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240216</creationdate><title>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</title><author>Nieuwenhuis, Robert ; Oliveras, Albert ; Rodriguez-Carbonell, Enric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Integer programming</topic><topic>Learning</topic><topic>Linear programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Nieuwenhuis, Robert</creatorcontrib><creatorcontrib>Oliveras, Albert</creatorcontrib><creatorcontrib>Rodriguez-Carbonell, Enric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieuwenhuis, Robert</au><au>Oliveras, Albert</au><au>Rodriguez-Carbonell, Enric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-02-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>State-of-the-art SAT solvers are nowadays able to handle huge real-world instances. The key to this success is the so-called Conflict-Driven Clause-Learning (CDCL) scheme, which encompasses a number of techniques that exploit the conflicts that are encountered during the search for a solution. In this article we extend these techniques to Integer Linear Programming (ILP), where variables may take general integer values instead of purely binary ones, constraints are more expressive than just propositional clauses, and there may be an objective function to optimise. We explain how these methods can be implemented efficiently, and discuss possible improvements. Our work is backed with a basic implementation that shows that, even in this far less mature stage, our techniques are already a useful complement to the state of the art in ILP solving.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2402.15522</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2932314288 |
source | Publicly Available Content Database |
subjects | Integer programming Learning Linear programming |
title | IntSat: Integer Linear Programming by Conflict-Driven Constraint-Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IntSat:%20Integer%20Linear%20Programming%20by%20Conflict-Driven%20Constraint-Learning&rft.jtitle=arXiv.org&rft.au=Nieuwenhuis,%20Robert&rft.date=2024-02-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2402.15522&rft_dat=%3Cproquest%3E2932314288%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-a01b4008e95e2ca7093ab7fed560e7dd25df157abda2a5483dcfcbc0da16f03f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932314288&rft_id=info:pmid/&rfr_iscdi=true |