Loading…

Particle-based model of liquid crystal skyrmion dynamics

Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is rela...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2024-02, Vol.2 (9), p.288-299
Main Authors: Teixeira, A. W, Tasinkevych, M, Dias, C. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-34c069b7b99da07a8796c23e2d946af27e7d3d4685460b28cf8ccb50ae303c993
container_end_page 299
container_issue 9
container_start_page 288
container_title Soft matter
container_volume 2
creator Teixeira, A. W
Tasinkevych, M
Dias, C. S
description Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field. Based on the results of the "fine-grained" Frank-Oseen continuum model, we have mapped these squirming director distortions onto an effective force that acts asymmetrically upon switching the electrical field on or off. The resulting model correctly reproduces the skyrmion dynamics, including velocity reversal as a function of the frequency of a pulse width modulated driving voltage. We have also obtained approximate analytical expressions for the phenomenological model parameters encoding their dependence upon the cholesteric pitch and the strength of the electric field. This has been achieved by fitting coarse-grained skyrmion trajectories to those determined in the framework of the Frank-Oseen model. Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime.
doi_str_mv 10.1039/d3sm01422c
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932390859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-34c069b7b99da07a8796c23e2d946af27e7d3d4685460b28cf8ccb50ae303c993</originalsourceid><addsrcrecordid>eNpd0dtLwzAUBvAgipvTF9-Vgi8iVNOcNJfHMa8wUVDBt5ImKWT2siXtQ_97Ozcn-JQD-fFx-A5Cpwm-TjDIGwOhwgklRO-hccIpjZmgYn83w-cIHYWwwBgETdghGoEAKlLCx0i8Kt86Xdo4V8GaqGqMLaOmiEq36pyJtO9Dq8oofPW-ck0dmb5WldPhGB0Uqgz2ZPtO0Mf93fvsMZ6_PDzNpvNYE8naGKjGTOY8l9IozJXgkmkClhhJmSoIt9yAoUyklOGcCF0IrfMUKwsYtJQwQZeb3KVvVp0NbVa5oG1Zqto2XciIJAxzCRQGevGPLprO18N2gwICEot0HXi1Udo3IXhbZEvvKuX7LMHZus_sFt6ef_qcDfh8G9nllTU7-lvgAM42wAe9-_07CHwDMFh4nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932390859</pqid></control><display><type>article</type><title>Particle-based model of liquid crystal skyrmion dynamics</title><source>Royal Society of Chemistry</source><creator>Teixeira, A. W ; Tasinkevych, M ; Dias, C. S</creator><creatorcontrib>Teixeira, A. W ; Tasinkevych, M ; Dias, C. S</creatorcontrib><description>Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field. Based on the results of the "fine-grained" Frank-Oseen continuum model, we have mapped these squirming director distortions onto an effective force that acts asymmetrically upon switching the electrical field on or off. The resulting model correctly reproduces the skyrmion dynamics, including velocity reversal as a function of the frequency of a pulse width modulated driving voltage. We have also obtained approximate analytical expressions for the phenomenological model parameters encoding their dependence upon the cholesteric pitch and the strength of the electric field. This has been achieved by fitting coarse-grained skyrmion trajectories to those determined in the framework of the Frank-Oseen model. Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm01422c</identifier><identifier>PMID: 38348527</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Continuum modeling ; Dynamics ; Electric field strength ; Electric fields ; Hypothetical particles ; Liquid crystals ; Mass flow ; Particle theory ; Pulse duration modulation</subject><ispartof>Soft matter, 2024-02, Vol.2 (9), p.288-299</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-34c069b7b99da07a8796c23e2d946af27e7d3d4685460b28cf8ccb50ae303c993</cites><orcidid>0000-0003-3238-6844 ; 0000-0003-0307-2563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38348527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, A. W</creatorcontrib><creatorcontrib>Tasinkevych, M</creatorcontrib><creatorcontrib>Dias, C. S</creatorcontrib><title>Particle-based model of liquid crystal skyrmion dynamics</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field. Based on the results of the "fine-grained" Frank-Oseen continuum model, we have mapped these squirming director distortions onto an effective force that acts asymmetrically upon switching the electrical field on or off. The resulting model correctly reproduces the skyrmion dynamics, including velocity reversal as a function of the frequency of a pulse width modulated driving voltage. We have also obtained approximate analytical expressions for the phenomenological model parameters encoding their dependence upon the cholesteric pitch and the strength of the electric field. This has been achieved by fitting coarse-grained skyrmion trajectories to those determined in the framework of the Frank-Oseen model. Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime.</description><subject>Continuum modeling</subject><subject>Dynamics</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Hypothetical particles</subject><subject>Liquid crystals</subject><subject>Mass flow</subject><subject>Particle theory</subject><subject>Pulse duration modulation</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0dtLwzAUBvAgipvTF9-Vgi8iVNOcNJfHMa8wUVDBt5ImKWT2siXtQ_97Ozcn-JQD-fFx-A5Cpwm-TjDIGwOhwgklRO-hccIpjZmgYn83w-cIHYWwwBgETdghGoEAKlLCx0i8Kt86Xdo4V8GaqGqMLaOmiEq36pyJtO9Dq8oofPW-ck0dmb5WldPhGB0Uqgz2ZPtO0Mf93fvsMZ6_PDzNpvNYE8naGKjGTOY8l9IozJXgkmkClhhJmSoIt9yAoUyklOGcCF0IrfMUKwsYtJQwQZeb3KVvVp0NbVa5oG1Zqto2XciIJAxzCRQGevGPLprO18N2gwICEot0HXi1Udo3IXhbZEvvKuX7LMHZus_sFt6ef_qcDfh8G9nllTU7-lvgAM42wAe9-_07CHwDMFh4nA</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Teixeira, A. W</creator><creator>Tasinkevych, M</creator><creator>Dias, C. S</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3238-6844</orcidid><orcidid>https://orcid.org/0000-0003-0307-2563</orcidid></search><sort><creationdate>20240228</creationdate><title>Particle-based model of liquid crystal skyrmion dynamics</title><author>Teixeira, A. W ; Tasinkevych, M ; Dias, C. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-34c069b7b99da07a8796c23e2d946af27e7d3d4685460b28cf8ccb50ae303c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Continuum modeling</topic><topic>Dynamics</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Hypothetical particles</topic><topic>Liquid crystals</topic><topic>Mass flow</topic><topic>Particle theory</topic><topic>Pulse duration modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, A. W</creatorcontrib><creatorcontrib>Tasinkevych, M</creatorcontrib><creatorcontrib>Dias, C. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, A. W</au><au>Tasinkevych, M</au><au>Dias, C. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-based model of liquid crystal skyrmion dynamics</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>2</volume><issue>9</issue><spage>288</spage><epage>299</epage><pages>288-299</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field. Based on the results of the "fine-grained" Frank-Oseen continuum model, we have mapped these squirming director distortions onto an effective force that acts asymmetrically upon switching the electrical field on or off. The resulting model correctly reproduces the skyrmion dynamics, including velocity reversal as a function of the frequency of a pulse width modulated driving voltage. We have also obtained approximate analytical expressions for the phenomenological model parameters encoding their dependence upon the cholesteric pitch and the strength of the electric field. This has been achieved by fitting coarse-grained skyrmion trajectories to those determined in the framework of the Frank-Oseen model. Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38348527</pmid><doi>10.1039/d3sm01422c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3238-6844</orcidid><orcidid>https://orcid.org/0000-0003-0307-2563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2024-02, Vol.2 (9), p.288-299
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2932390859
source Royal Society of Chemistry
subjects Continuum modeling
Dynamics
Electric field strength
Electric fields
Hypothetical particles
Liquid crystals
Mass flow
Particle theory
Pulse duration modulation
title Particle-based model of liquid crystal skyrmion dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-based%20model%20of%20liquid%20crystal%20skyrmion%20dynamics&rft.jtitle=Soft%20matter&rft.au=Teixeira,%20A.%20W&rft.date=2024-02-28&rft.volume=2&rft.issue=9&rft.spage=288&rft.epage=299&rft.pages=288-299&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm01422c&rft_dat=%3Cproquest_cross%3E2926079343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-34c069b7b99da07a8796c23e2d946af27e7d3d4685460b28cf8ccb50ae303c993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932390859&rft_id=info:pmid/38348527&rfr_iscdi=true