Loading…

Enhanced mechanical properties and thermal conductivity of polyimide nanocomposites incorporating individualized boron-doped graphene

Herein, we report significantly enhanced mechanical properties and thermal conductivity of polyimide (PI) by incorporating a small amount (0.01 wt %) of individualized boron-doped high-quality graphene as a filler. The boron-doped expandable graphite (B-EG) was synthesized by mixing boric acid (H3BO...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Letters 2020-08, Vol.30 (4), p.457-464
Main Authors: Ha, Yu-Mi, Kim, Young Nam, Kim, Young-O, So, Chan, Lee, Jae-Suk, Kim, Jaewoo, Jung, Yong Chae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we report significantly enhanced mechanical properties and thermal conductivity of polyimide (PI) by incorporating a small amount (0.01 wt %) of individualized boron-doped high-quality graphene as a filler. The boron-doped expandable graphite (B-EG) was synthesized by mixing boric acid (H3BO4) with expandable graphite (EG) and thermally treating the mixture at 2450 °C for 30 min using a graphite furnace in an argon atmosphere. The boron-doped graphene (B-g) was prepared by the solution-phase exfoliation of B-EG with an ultrasonication process, which is a method to obtain individualized graphene as well as few-layer graphene. The PI nanocomposites were prepared using the obtained graphene. The PI nanocomposites synthesized with high-quality B-graphene (B-g) showed enhanced mechanical properties and thermal conductivity compared to those of pure PI due to the doping effects and strong interfacial interactions between graphene and the PI matrix.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-019-00115-y