Loading…

Optimization-Based Fuzzy Energy Management Strategy for PEM Fuel Cell/Battery/Supercapacitor Hybrid Construction Excavator

Fuel cell hybrid electric construction equipment (FCHECE) is known as a promising solution to achieve the goal of energy saving and environment protection. Energy management strategy is a key technology of FCHECE, which splits the energy flow between power sources. This paper presents a novel optima...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing-green technology 2021-07, Vol.8 (4), p.1267-1285
Main Authors: Dao, Hoang Vu, To, Xuan Dinh, Truong, Hoai Vu Anh, Do, Tri Cuong, Ho, Cong Minh, Dang, Tri Dung, Ahn, Kyoung Kwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fuel cell hybrid electric construction equipment (FCHECE) is known as a promising solution to achieve the goal of energy saving and environment protection. Energy management strategy is a key technology of FCHECE, which splits the energy flow between power sources. This paper presents a novel optimal energy management strategy for a hybrid electric-powered hydraulic excavator system to enhance power performance, power sources lifespan, and fuel economy. As for the proposed powertrain configuration, fuel cell serves as a primary energy source, and supercapacitor and battery are considered as energy storages. The integration of supercapacitor and battery in fuel cell vehicle has advantages of improving power performance and storing the regenerative energy for future usage. An energy management strategy based on fuzzy logic control and a rule-based algorithm is proposed to effectively distribute the power between the three sources and reuse the regenerative energy. Furthermore, the parameters of the fuzzy logic system are optimized using the combination of a backtracking search algorithm which provides a good direction to the global optimal region and sequential dynamic programming as a local search method to fine-tune the optimal solution in order to reduce the hydrogen consumption and prolong the lifetime of the power sources. Simulation results show that the proposed energy management strategy enhances the vehicle performance, improves fuel economy of the FCHECE by 10.919%, increase battery and supercapacitor charge-sustaining capability as well as efficiency of the fuel cell system.
ISSN:2288-6206
2198-0810
DOI:10.1007/s40684-020-00262-y