Loading…

User-Silicon Entangled Mobile Identity Authentication

We explore mobile device touchscreen characteristics to build a user-device (UD) biometric physical unclonable function (PUF). Human user touchscreen interaction induces dynamic capacitive differences. Sensors detect current differences which are a function of both (1) a human biometric of how a sha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hardware and systems security 2020-09, Vol.4 (3), p.208-229
Main Authors: Dee, Timothy, Scheel, Ryan, Montelibano, Nicholas, Tyagi, Akhilesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1157-c70c52b8f165b51286c61ec27847dc821e1288255dbd94e11c57b117a56b923b3
container_end_page 229
container_issue 3
container_start_page 208
container_title Journal of hardware and systems security
container_volume 4
creator Dee, Timothy
Scheel, Ryan
Montelibano, Nicholas
Tyagi, Akhilesh
description We explore mobile device touchscreen characteristics to build a user-device (UD) biometric physical unclonable function (PUF). Human user touchscreen interaction induces dynamic capacitive differences. Sensors detect current differences which are a function of both (1) a human biometric of how a shape is traced and (2) silicon foundry process transistor-level variability embedded in the touchscreen grid. This forms a physical function with input x defining a shape and output y ed from the measured current value stream. We argue and establish that this physical function has PUF attributes. Moreover, it provides a robust user-device biometric-based authentication mechanism. Authentication is based on geometric shapes (challenges) drawn on the touchscreen. Users trace them. The authentication layer creates a response abstract, and validates it against a user profile. Authentication accuracy is affected by the complexity of geometric shapes as well as the validation algorithm. We consider polyline shapes (simple gestures) and complex closed geometric shapes (complex gestures). Complex gestures offer higher response entropy, but are computationally less efficient with a slightly lower validation accuracy. Complex gestures achieve 99.6 % accuracy compared with 100 % for simple gestures. User profiles exhibit physical unclonable function (PUF) properties. Touchscreen gestures are quantized into binary strings. Gesture hamming distance is 60+ bits for 128-bit strings for different user-device profiles; it is 0 bits for the same profile. This demonstrates variability and reproducibility respectively. Montreal TestU01 tests binary string pseudorandom characteristics; the majority of tests pass showing pseudorandom number generator (PRG) characteristics.
doi_str_mv 10.1007/s41635-020-00098-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932875843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932875843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1157-c70c52b8f165b51286c61ec27847dc821e1288255dbd94e11c57b117a56b923b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGpfwNWA62jOyeQyy1KqFioutOswyaQ1MmZqMl307Z06ojtX5-fwX-Aj5BrYLTCm7nIJkgvKkFHGWKWpOiMTFKyivOTy_FejviSznINlHFByVfEJEZvsE30JbXBdLJaxr-Ou9U3x1NnQ-mLV-NiH_ljMD_3bSbq6D128Ihfbus1-9nOnZHO_fF080vXzw2oxX1MHIBR1ijmBVm9BCisAtXQSvEOlS9U4jeCHn0YhGttUpQdwQlkAVQtpK-SWT8nN2LtP3efB5968d4cUh0mDFUethC754MLR5VKXc_Jbs0_ho05HA8ycCJmRkBkImW9CRg0hPobyYI47n_6q_0l9Ab3WZr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932875843</pqid></control><display><type>article</type><title>User-Silicon Entangled Mobile Identity Authentication</title><source>Springer Nature</source><creator>Dee, Timothy ; Scheel, Ryan ; Montelibano, Nicholas ; Tyagi, Akhilesh</creator><creatorcontrib>Dee, Timothy ; Scheel, Ryan ; Montelibano, Nicholas ; Tyagi, Akhilesh</creatorcontrib><description>We explore mobile device touchscreen characteristics to build a user-device (UD) biometric physical unclonable function (PUF). Human user touchscreen interaction induces dynamic capacitive differences. Sensors detect current differences which are a function of both (1) a human biometric of how a shape is traced and (2) silicon foundry process transistor-level variability embedded in the touchscreen grid. This forms a physical function with input x defining a shape and output y ed from the measured current value stream. We argue and establish that this physical function has PUF attributes. Moreover, it provides a robust user-device biometric-based authentication mechanism. Authentication is based on geometric shapes (challenges) drawn on the touchscreen. Users trace them. The authentication layer creates a response abstract, and validates it against a user profile. Authentication accuracy is affected by the complexity of geometric shapes as well as the validation algorithm. We consider polyline shapes (simple gestures) and complex closed geometric shapes (complex gestures). Complex gestures offer higher response entropy, but are computationally less efficient with a slightly lower validation accuracy. Complex gestures achieve 99.6 % accuracy compared with 100 % for simple gestures. User profiles exhibit physical unclonable function (PUF) properties. Touchscreen gestures are quantized into binary strings. Gesture hamming distance is 60+ bits for 128-bit strings for different user-device profiles; it is 0 bits for the same profile. This demonstrates variability and reproducibility respectively. Montreal TestU01 tests binary string pseudorandom characteristics; the majority of tests pass showing pseudorandom number generator (PRG) characteristics.</description><identifier>ISSN: 2509-3428</identifier><identifier>EISSN: 2509-3436</identifier><identifier>DOI: 10.1007/s41635-020-00098-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accelerometers ; Accuracy ; Algorithms ; Authentication ; Biometrics ; Circuits and Systems ; Complexity ; Computer Hardware ; Engineering ; Information Systems Applications (incl.Internet) ; Interactive computer systems ; Machine learning ; Microelectromechanical systems ; Pseudorandom ; Reproducibility ; Sensors ; Silicon ; Strings ; Systems and Data Security ; Touch screens ; Transistors ; User behavior</subject><ispartof>Journal of hardware and systems security, 2020-09, Vol.4 (3), p.208-229</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1157-c70c52b8f165b51286c61ec27847dc821e1288255dbd94e11c57b117a56b923b3</cites><orcidid>0000-0002-7125-3318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Dee, Timothy</creatorcontrib><creatorcontrib>Scheel, Ryan</creatorcontrib><creatorcontrib>Montelibano, Nicholas</creatorcontrib><creatorcontrib>Tyagi, Akhilesh</creatorcontrib><title>User-Silicon Entangled Mobile Identity Authentication</title><title>Journal of hardware and systems security</title><addtitle>J Hardw Syst Secur</addtitle><description>We explore mobile device touchscreen characteristics to build a user-device (UD) biometric physical unclonable function (PUF). Human user touchscreen interaction induces dynamic capacitive differences. Sensors detect current differences which are a function of both (1) a human biometric of how a shape is traced and (2) silicon foundry process transistor-level variability embedded in the touchscreen grid. This forms a physical function with input x defining a shape and output y ed from the measured current value stream. We argue and establish that this physical function has PUF attributes. Moreover, it provides a robust user-device biometric-based authentication mechanism. Authentication is based on geometric shapes (challenges) drawn on the touchscreen. Users trace them. The authentication layer creates a response abstract, and validates it against a user profile. Authentication accuracy is affected by the complexity of geometric shapes as well as the validation algorithm. We consider polyline shapes (simple gestures) and complex closed geometric shapes (complex gestures). Complex gestures offer higher response entropy, but are computationally less efficient with a slightly lower validation accuracy. Complex gestures achieve 99.6 % accuracy compared with 100 % for simple gestures. User profiles exhibit physical unclonable function (PUF) properties. Touchscreen gestures are quantized into binary strings. Gesture hamming distance is 60+ bits for 128-bit strings for different user-device profiles; it is 0 bits for the same profile. This demonstrates variability and reproducibility respectively. Montreal TestU01 tests binary string pseudorandom characteristics; the majority of tests pass showing pseudorandom number generator (PRG) characteristics.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Authentication</subject><subject>Biometrics</subject><subject>Circuits and Systems</subject><subject>Complexity</subject><subject>Computer Hardware</subject><subject>Engineering</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Interactive computer systems</subject><subject>Machine learning</subject><subject>Microelectromechanical systems</subject><subject>Pseudorandom</subject><subject>Reproducibility</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Strings</subject><subject>Systems and Data Security</subject><subject>Touch screens</subject><subject>Transistors</subject><subject>User behavior</subject><issn>2509-3428</issn><issn>2509-3436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWGpfwNWA62jOyeQyy1KqFioutOswyaQ1MmZqMl307Z06ojtX5-fwX-Aj5BrYLTCm7nIJkgvKkFHGWKWpOiMTFKyivOTy_FejviSznINlHFByVfEJEZvsE30JbXBdLJaxr-Ou9U3x1NnQ-mLV-NiH_ljMD_3bSbq6D128Ihfbus1-9nOnZHO_fF080vXzw2oxX1MHIBR1ijmBVm9BCisAtXQSvEOlS9U4jeCHn0YhGttUpQdwQlkAVQtpK-SWT8nN2LtP3efB5968d4cUh0mDFUethC754MLR5VKXc_Jbs0_ho05HA8ycCJmRkBkImW9CRg0hPobyYI47n_6q_0l9Ab3WZr0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Dee, Timothy</creator><creator>Scheel, Ryan</creator><creator>Montelibano, Nicholas</creator><creator>Tyagi, Akhilesh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7125-3318</orcidid></search><sort><creationdate>20200901</creationdate><title>User-Silicon Entangled Mobile Identity Authentication</title><author>Dee, Timothy ; Scheel, Ryan ; Montelibano, Nicholas ; Tyagi, Akhilesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1157-c70c52b8f165b51286c61ec27847dc821e1288255dbd94e11c57b117a56b923b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Authentication</topic><topic>Biometrics</topic><topic>Circuits and Systems</topic><topic>Complexity</topic><topic>Computer Hardware</topic><topic>Engineering</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Interactive computer systems</topic><topic>Machine learning</topic><topic>Microelectromechanical systems</topic><topic>Pseudorandom</topic><topic>Reproducibility</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Strings</topic><topic>Systems and Data Security</topic><topic>Touch screens</topic><topic>Transistors</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dee, Timothy</creatorcontrib><creatorcontrib>Scheel, Ryan</creatorcontrib><creatorcontrib>Montelibano, Nicholas</creatorcontrib><creatorcontrib>Tyagi, Akhilesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of hardware and systems security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dee, Timothy</au><au>Scheel, Ryan</au><au>Montelibano, Nicholas</au><au>Tyagi, Akhilesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User-Silicon Entangled Mobile Identity Authentication</atitle><jtitle>Journal of hardware and systems security</jtitle><stitle>J Hardw Syst Secur</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>4</volume><issue>3</issue><spage>208</spage><epage>229</epage><pages>208-229</pages><issn>2509-3428</issn><eissn>2509-3436</eissn><abstract>We explore mobile device touchscreen characteristics to build a user-device (UD) biometric physical unclonable function (PUF). Human user touchscreen interaction induces dynamic capacitive differences. Sensors detect current differences which are a function of both (1) a human biometric of how a shape is traced and (2) silicon foundry process transistor-level variability embedded in the touchscreen grid. This forms a physical function with input x defining a shape and output y ed from the measured current value stream. We argue and establish that this physical function has PUF attributes. Moreover, it provides a robust user-device biometric-based authentication mechanism. Authentication is based on geometric shapes (challenges) drawn on the touchscreen. Users trace them. The authentication layer creates a response abstract, and validates it against a user profile. Authentication accuracy is affected by the complexity of geometric shapes as well as the validation algorithm. We consider polyline shapes (simple gestures) and complex closed geometric shapes (complex gestures). Complex gestures offer higher response entropy, but are computationally less efficient with a slightly lower validation accuracy. Complex gestures achieve 99.6 % accuracy compared with 100 % for simple gestures. User profiles exhibit physical unclonable function (PUF) properties. Touchscreen gestures are quantized into binary strings. Gesture hamming distance is 60+ bits for 128-bit strings for different user-device profiles; it is 0 bits for the same profile. This demonstrates variability and reproducibility respectively. Montreal TestU01 tests binary string pseudorandom characteristics; the majority of tests pass showing pseudorandom number generator (PRG) characteristics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41635-020-00098-7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7125-3318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2509-3428
ispartof Journal of hardware and systems security, 2020-09, Vol.4 (3), p.208-229
issn 2509-3428
2509-3436
language eng
recordid cdi_proquest_journals_2932875843
source Springer Nature
subjects Accelerometers
Accuracy
Algorithms
Authentication
Biometrics
Circuits and Systems
Complexity
Computer Hardware
Engineering
Information Systems Applications (incl.Internet)
Interactive computer systems
Machine learning
Microelectromechanical systems
Pseudorandom
Reproducibility
Sensors
Silicon
Strings
Systems and Data Security
Touch screens
Transistors
User behavior
title User-Silicon Entangled Mobile Identity Authentication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User-Silicon%20Entangled%20Mobile%20Identity%20Authentication&rft.jtitle=Journal%20of%20hardware%20and%20systems%20security&rft.au=Dee,%20Timothy&rft.date=2020-09-01&rft.volume=4&rft.issue=3&rft.spage=208&rft.epage=229&rft.pages=208-229&rft.issn=2509-3428&rft.eissn=2509-3436&rft_id=info:doi/10.1007/s41635-020-00098-7&rft_dat=%3Cproquest_cross%3E2932875843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1157-c70c52b8f165b51286c61ec27847dc821e1288255dbd94e11c57b117a56b923b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932875843&rft_id=info:pmid/&rfr_iscdi=true