Loading…

Camphor wood waste-derived microporous carbons as high-performance electrode materials for supercapacitors

Sustainable biomass-derived porous carbons demonstrate excellent capacitive properties owing to their heteroatom-rich nature and distinct textural feature. Herein, a series of nitrogen-/phosphorus-/oxygen-containing microporous carbons (CWW-N/P/O-MPCs) have been successfully fabricated by etching in...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Letters 2019-06, Vol.29 (3), p.213-218
Main Authors: Ding, Chenfeng, Yan, Xiaodong, Lan, Jin-le, Ryu, Seungkon, Yu, Yunhua, Yang, Xiaoping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sustainable biomass-derived porous carbons demonstrate excellent capacitive properties owing to their heteroatom-rich nature and distinct textural feature. Herein, a series of nitrogen-/phosphorus-/oxygen-containing microporous carbons (CWW-N/P/O-MPCs) have been successfully fabricated by etching in H2O2 solution, pre-treatment of camphor wood wastes with KOH solution and subsequent carbonization. As an electrode material for supercapacitors, the typical microporous carbon (CWW-N/P/O-MPCs-0.5) exhibits a remarkably high specific capacitance of 245 F g−1 at 0.5 A g−1, corresponding to an impressively large volumetric capacitance of 208 F m−3, and excellent long-term stability over 10,000 cycles. The excellent electrochemical performance can be ascribed to the optimal combination of heteroatom groups and ultrafine micropores.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-019-00013-3