Loading…
On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases
In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that the obstacle surface can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology...
Saved in:
Published in: | Doklady. Mathematics 2023-10, Vol.108 (2), p.346-351 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-4871ebdc58231a7083762a1aa6eb8f3cdf965eefff162daafa24795d722afca33 |
container_end_page | 351 |
container_issue | 2 |
container_start_page | 346 |
container_title | Doklady. Mathematics |
container_volume | 108 |
creator | Bekmaganbetov, K. A. Tolemys, A. A. Chepyzhov, V. V. Chechkin, G. A. |
description | In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that the obstacle surface can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without an additional potential (in the subcritical case) in the medium without obstacles, or disappear (in the supercritical case). |
doi_str_mv | 10.1134/S1064562423701235 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933033375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933033375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4871ebdc58231a7083762a1aa6eb8f3cdf965eefff162daafa24795d722afca33</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4BbR_OYV92VsVZhpEJ1PdzJJDWlndQkg9SVe5f-oV9iSn0sxNU5cB6XexA6puSMUh6fTylJ4yRlMeMZoYwnO6hHE06jnKdsN_AgRxt9Hx04NyckThghPfQ2afHQewvCG-uwUXis25e6s7OP1_cS2gY6PHrqwGvTOqxbfGmWEOBZ-0dcGgGLxRrfSatNowW-1cIa520nfGflBZ52tbDa62A7xcUPC7VBWkn7LeICnHSHaE_BwsmjL-yjh6vRfXEdlZPxTTEsI8HS3EdxnlFZNyLJGaeQkZxnKQMKkMo6V1w0apAmUiqlaMoaAAUszgZJkzEGSgDnfXSy7V1Z89RJ56u56WwbTlZswDnhnGdJcNGta_OSs1JVK6uXYNcVJdVm8-rP5iHDthkXvO1M2t_m_0OfmgmGgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933033375</pqid></control><display><type>article</type><title>On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases</title><source>Springer Nature</source><creator>Bekmaganbetov, K. A. ; Tolemys, A. A. ; Chepyzhov, V. V. ; Chechkin, G. A.</creator><creatorcontrib>Bekmaganbetov, K. A. ; Tolemys, A. A. ; Chepyzhov, V. V. ; Chechkin, G. A.</creatorcontrib><description>In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that the obstacle surface can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without an additional potential (in the subcritical case) in the medium without obstacles, or disappear (in the supercritical case).</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562423701235</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Barriers ; Landau-Ginzburg equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Topology</subject><ispartof>Doklady. Mathematics, 2023-10, Vol.108 (2), p.346-351</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1064-5624, Doklady Mathematics, 2023, Vol. 108, No. 2, pp. 346–351. © Pleiades Publishing, Ltd., 2023. ISSN 1064-5624, Doklady Mathematics, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2023, Vol. 513, pp. 9–14.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4871ebdc58231a7083762a1aa6eb8f3cdf965eefff162daafa24795d722afca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bekmaganbetov, K. A.</creatorcontrib><creatorcontrib>Tolemys, A. A.</creatorcontrib><creatorcontrib>Chepyzhov, V. V.</creatorcontrib><creatorcontrib>Chechkin, G. A.</creatorcontrib><title>On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that the obstacle surface can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without an additional potential (in the subcritical case) in the medium without obstacles, or disappear (in the supercritical case).</description><subject>Barriers</subject><subject>Landau-Ginzburg equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topology</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4BbR_OYV92VsVZhpEJ1PdzJJDWlndQkg9SVe5f-oV9iSn0sxNU5cB6XexA6puSMUh6fTylJ4yRlMeMZoYwnO6hHE06jnKdsN_AgRxt9Hx04NyckThghPfQ2afHQewvCG-uwUXis25e6s7OP1_cS2gY6PHrqwGvTOqxbfGmWEOBZ-0dcGgGLxRrfSatNowW-1cIa520nfGflBZ52tbDa62A7xcUPC7VBWkn7LeICnHSHaE_BwsmjL-yjh6vRfXEdlZPxTTEsI8HS3EdxnlFZNyLJGaeQkZxnKQMKkMo6V1w0apAmUiqlaMoaAAUszgZJkzEGSgDnfXSy7V1Z89RJ56u56WwbTlZswDnhnGdJcNGta_OSs1JVK6uXYNcVJdVm8-rP5iHDthkXvO1M2t_m_0OfmgmGgg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bekmaganbetov, K. A.</creator><creator>Tolemys, A. A.</creator><creator>Chepyzhov, V. V.</creator><creator>Chechkin, G. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases</title><author>Bekmaganbetov, K. A. ; Tolemys, A. A. ; Chepyzhov, V. V. ; Chechkin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4871ebdc58231a7083762a1aa6eb8f3cdf965eefff162daafa24795d722afca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barriers</topic><topic>Landau-Ginzburg equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekmaganbetov, K. A.</creatorcontrib><creatorcontrib>Tolemys, A. A.</creatorcontrib><creatorcontrib>Chepyzhov, V. V.</creatorcontrib><creatorcontrib>Chechkin, G. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekmaganbetov, K. A.</au><au>Tolemys, A. A.</au><au>Chepyzhov, V. V.</au><au>Chechkin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>108</volume><issue>2</issue><spage>346</spage><epage>351</epage><pages>346-351</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that the obstacle surface can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without an additional potential (in the subcritical case) in the medium without obstacles, or disappear (in the supercritical case).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562423701235</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2023-10, Vol.108 (2), p.346-351 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2933033375 |
source | Springer Nature |
subjects | Barriers Landau-Ginzburg equations Mathematical analysis Mathematics Mathematics and Statistics Topology |
title | On Attractors of Ginzburg–Landau Equations in Domain with Locally Periodic Microstructure: Subcritical, Critical, and Supercritical Cases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Attractors%20of%20Ginzburg%E2%80%93Landau%20Equations%20in%20Domain%20with%20Locally%20Periodic%20Microstructure:%20Subcritical,%20Critical,%20and%20Supercritical%20Cases&rft.jtitle=Doklady.%20Mathematics&rft.au=Bekmaganbetov,%20K.%20A.&rft.date=2023-10-01&rft.volume=108&rft.issue=2&rft.spage=346&rft.epage=351&rft.pages=346-351&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562423701235&rft_dat=%3Cproquest_cross%3E2933033375%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-4871ebdc58231a7083762a1aa6eb8f3cdf965eefff162daafa24795d722afca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933033375&rft_id=info:pmid/&rfr_iscdi=true |