Loading…
Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition
Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing...
Saved in:
Published in: | Acta metallurgica sinica : English letters 2021-06, Vol.34 (6), p.755-764 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83 |
container_end_page | 764 |
container_issue | 6 |
container_start_page | 755 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 34 |
creator | Yu, Yi-Shuang Wang, Zhi-Quan Wu, Bin-Bin Zhao, Jing-Xiao Wang, Xue-Lin Guo, Hui Shang, Cheng-Jia |
description | Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature (
M
S
) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain. |
doi_str_mv | 10.1007/s40195-020-01186-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933040022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933040022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmcxjWYraQkGh1W24nUk7KWNSk9THv3fqCO5cXQ6c71z4CLnicMMBituYAa8UAwEMOC9z9nlERoJXGeOirI7JqG_lrOAVPyVnMW77JDJVjMjbEm3ng3Ub-oLBokv0Ce1PTp7euRZdbejsdYd1oku_37TOxEito1O7adkiBeM2qaVz_8HGXee_6CIZ00X6bpEuA_bwBMPKOzpuGpusdxfkZI1dNJe_95w8398tJ1M2f3yYTcZzVstcJtbkqkRuCsFrlUtQBlA2Cpu8FKZQFYg1YFat83olilwVK2gUVLLvC4No6lKek-thdxf8297EpLd-H1z_UotKSsgAhOhbYmjVwccYzFrvgn3F8KU56INaPajVvVr9o1Z_9pAcoLg7mDLhb_of6htIJXyZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933040022</pqid></control><display><type>article</type><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><source>Springer Nature</source><creator>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</creator><creatorcontrib>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</creatorcontrib><description>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature (
M
S
) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-020-01186-x</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Alloys ; Brittle fracture ; Carbon ; Carbon content ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Crystallography ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; High strength low alloy steels ; Impact strength ; Impact tests ; Martensite ; Martensitic transformations ; Materials Science ; Mechanical properties ; Metallic Materials ; Morphology ; Nanotechnology ; Organometallic Chemistry ; Scanning electron microscopy ; Software ; Spectroscopy/Spectrometry ; Steel ; Tensile strength ; Tribology ; Yield stress</subject><ispartof>Acta metallurgica sinica : English letters, 2021-06, Vol.34 (6), p.755-764</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</citedby><cites>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yu, Yi-Shuang</creatorcontrib><creatorcontrib>Wang, Zhi-Quan</creatorcontrib><creatorcontrib>Wu, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Jing-Xiao</creatorcontrib><creatorcontrib>Wang, Xue-Lin</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Shang, Cheng-Jia</creatorcontrib><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature (
M
S
) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</description><subject>Alloys</subject><subject>Brittle fracture</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Crystallography</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>High strength low alloy steels</subject><subject>Impact strength</subject><subject>Impact tests</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Scanning electron microscopy</subject><subject>Software</subject><subject>Spectroscopy/Spectrometry</subject><subject>Steel</subject><subject>Tensile strength</subject><subject>Tribology</subject><subject>Yield stress</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmcxjWYraQkGh1W24nUk7KWNSk9THv3fqCO5cXQ6c71z4CLnicMMBituYAa8UAwEMOC9z9nlERoJXGeOirI7JqG_lrOAVPyVnMW77JDJVjMjbEm3ng3Ub-oLBokv0Ce1PTp7euRZdbejsdYd1oku_37TOxEito1O7adkiBeM2qaVz_8HGXee_6CIZ00X6bpEuA_bwBMPKOzpuGpusdxfkZI1dNJe_95w8398tJ1M2f3yYTcZzVstcJtbkqkRuCsFrlUtQBlA2Cpu8FKZQFYg1YFat83olilwVK2gUVLLvC4No6lKek-thdxf8297EpLd-H1z_UotKSsgAhOhbYmjVwccYzFrvgn3F8KU56INaPajVvVr9o1Z_9pAcoLg7mDLhb_of6htIJXyZ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yu, Yi-Shuang</creator><creator>Wang, Zhi-Quan</creator><creator>Wu, Bin-Bin</creator><creator>Zhao, Jing-Xiao</creator><creator>Wang, Xue-Lin</creator><creator>Guo, Hui</creator><creator>Shang, Cheng-Jia</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><author>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Brittle fracture</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Crystallography</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>High strength low alloy steels</topic><topic>Impact strength</topic><topic>Impact tests</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Scanning electron microscopy</topic><topic>Software</topic><topic>Spectroscopy/Spectrometry</topic><topic>Steel</topic><topic>Tensile strength</topic><topic>Tribology</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yi-Shuang</creatorcontrib><creatorcontrib>Wang, Zhi-Quan</creatorcontrib><creatorcontrib>Wu, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Jing-Xiao</creatorcontrib><creatorcontrib>Wang, Xue-Lin</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Shang, Cheng-Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yi-Shuang</au><au>Wang, Zhi-Quan</au><au>Wu, Bin-Bin</au><au>Zhao, Jing-Xiao</au><au>Wang, Xue-Lin</au><au>Guo, Hui</au><au>Shang, Cheng-Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>34</volume><issue>6</issue><spage>755</spage><epage>764</epage><pages>755-764</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature (
M
S
) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-020-01186-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2021-06, Vol.34 (6), p.755-764 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2933040022 |
source | Springer Nature |
subjects | Alloys Brittle fracture Carbon Carbon content Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Crystallography Ductile fracture Ductile-brittle transition Grain boundaries High strength low alloy steels Impact strength Impact tests Martensite Martensitic transformations Materials Science Mechanical properties Metallic Materials Morphology Nanotechnology Organometallic Chemistry Scanning electron microscopy Software Spectroscopy/Spectrometry Steel Tensile strength Tribology Yield stress |
title | Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Variant%20Pairing%20to%20Enhance%20Impact%20Toughness%20in%20High-Strength%20Low-Alloy%20Steels%20via%20Trace%20Carbon%20Addition&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Yu,%20Yi-Shuang&rft.date=2021-06-01&rft.volume=34&rft.issue=6&rft.spage=755&rft.epage=764&rft.pages=755-764&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-020-01186-x&rft_dat=%3Cproquest_cross%3E2933040022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933040022&rft_id=info:pmid/&rfr_iscdi=true |