Loading…

Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition

Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing...

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica sinica : English letters 2021-06, Vol.34 (6), p.755-764
Main Authors: Yu, Yi-Shuang, Wang, Zhi-Quan, Wu, Bin-Bin, Zhao, Jing-Xiao, Wang, Xue-Lin, Guo, Hui, Shang, Cheng-Jia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83
cites cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83
container_end_page 764
container_issue 6
container_start_page 755
container_title Acta metallurgica sinica : English letters
container_volume 34
creator Yu, Yi-Shuang
Wang, Zhi-Quan
Wu, Bin-Bin
Zhao, Jing-Xiao
Wang, Xue-Lin
Guo, Hui
Shang, Cheng-Jia
description Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature ( M S ) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.
doi_str_mv 10.1007/s40195-020-01186-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933040022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933040022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmcxjWYraQkGh1W24nUk7KWNSk9THv3fqCO5cXQ6c71z4CLnicMMBituYAa8UAwEMOC9z9nlERoJXGeOirI7JqG_lrOAVPyVnMW77JDJVjMjbEm3ng3Ub-oLBokv0Ce1PTp7euRZdbejsdYd1oku_37TOxEito1O7adkiBeM2qaVz_8HGXee_6CIZ00X6bpEuA_bwBMPKOzpuGpusdxfkZI1dNJe_95w8398tJ1M2f3yYTcZzVstcJtbkqkRuCsFrlUtQBlA2Cpu8FKZQFYg1YFat83olilwVK2gUVLLvC4No6lKek-thdxf8297EpLd-H1z_UotKSsgAhOhbYmjVwccYzFrvgn3F8KU56INaPajVvVr9o1Z_9pAcoLg7mDLhb_of6htIJXyZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933040022</pqid></control><display><type>article</type><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><source>Springer Nature</source><creator>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</creator><creatorcontrib>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</creatorcontrib><description>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature ( M S ) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-020-01186-x</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Alloys ; Brittle fracture ; Carbon ; Carbon content ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Crystallography ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; High strength low alloy steels ; Impact strength ; Impact tests ; Martensite ; Martensitic transformations ; Materials Science ; Mechanical properties ; Metallic Materials ; Morphology ; Nanotechnology ; Organometallic Chemistry ; Scanning electron microscopy ; Software ; Spectroscopy/Spectrometry ; Steel ; Tensile strength ; Tribology ; Yield stress</subject><ispartof>Acta metallurgica sinica : English letters, 2021-06, Vol.34 (6), p.755-764</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</citedby><cites>FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yu, Yi-Shuang</creatorcontrib><creatorcontrib>Wang, Zhi-Quan</creatorcontrib><creatorcontrib>Wu, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Jing-Xiao</creatorcontrib><creatorcontrib>Wang, Xue-Lin</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Shang, Cheng-Jia</creatorcontrib><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature ( M S ) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</description><subject>Alloys</subject><subject>Brittle fracture</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Crystallography</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>High strength low alloy steels</subject><subject>Impact strength</subject><subject>Impact tests</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Scanning electron microscopy</subject><subject>Software</subject><subject>Spectroscopy/Spectrometry</subject><subject>Steel</subject><subject>Tensile strength</subject><subject>Tribology</subject><subject>Yield stress</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmcxjWYraQkGh1W24nUk7KWNSk9THv3fqCO5cXQ6c71z4CLnicMMBituYAa8UAwEMOC9z9nlERoJXGeOirI7JqG_lrOAVPyVnMW77JDJVjMjbEm3ng3Ub-oLBokv0Ce1PTp7euRZdbejsdYd1oku_37TOxEito1O7adkiBeM2qaVz_8HGXee_6CIZ00X6bpEuA_bwBMPKOzpuGpusdxfkZI1dNJe_95w8398tJ1M2f3yYTcZzVstcJtbkqkRuCsFrlUtQBlA2Cpu8FKZQFYg1YFat83olilwVK2gUVLLvC4No6lKek-thdxf8297EpLd-H1z_UotKSsgAhOhbYmjVwccYzFrvgn3F8KU56INaPajVvVr9o1Z_9pAcoLg7mDLhb_of6htIJXyZ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yu, Yi-Shuang</creator><creator>Wang, Zhi-Quan</creator><creator>Wu, Bin-Bin</creator><creator>Zhao, Jing-Xiao</creator><creator>Wang, Xue-Lin</creator><creator>Guo, Hui</creator><creator>Shang, Cheng-Jia</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</title><author>Yu, Yi-Shuang ; Wang, Zhi-Quan ; Wu, Bin-Bin ; Zhao, Jing-Xiao ; Wang, Xue-Lin ; Guo, Hui ; Shang, Cheng-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Brittle fracture</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Crystallography</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>High strength low alloy steels</topic><topic>Impact strength</topic><topic>Impact tests</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Scanning electron microscopy</topic><topic>Software</topic><topic>Spectroscopy/Spectrometry</topic><topic>Steel</topic><topic>Tensile strength</topic><topic>Tribology</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yi-Shuang</creatorcontrib><creatorcontrib>Wang, Zhi-Quan</creatorcontrib><creatorcontrib>Wu, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Jing-Xiao</creatorcontrib><creatorcontrib>Wang, Xue-Lin</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Shang, Cheng-Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yi-Shuang</au><au>Wang, Zhi-Quan</au><au>Wu, Bin-Bin</au><au>Zhao, Jing-Xiao</au><au>Wang, Xue-Lin</au><au>Guo, Hui</au><au>Shang, Cheng-Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>34</volume><issue>6</issue><spage>755</spage><epage>764</epage><pages>755-764</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Alloying can make conventional metals reach ultra-high strength, but this usually comes at dramatic loss of toughness. In this work, a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition. The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics. As the carbon content increases, the packets and blocks are refined, and the − 40 ℃ impact toughness improves. The enhancement of impact toughness results from the higher density of block boundaries, and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures, then to ductile fracture due to the increased carbon. Increasing the carbon content would lower the martensite start temperature ( M S ) temperature and driving force for martensitic transformation, and increase the strength of austenite matrix, which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-020-01186-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1006-7191
ispartof Acta metallurgica sinica : English letters, 2021-06, Vol.34 (6), p.755-764
issn 1006-7191
2194-1289
language eng
recordid cdi_proquest_journals_2933040022
source Springer Nature
subjects Alloys
Brittle fracture
Carbon
Carbon content
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Crystallography
Ductile fracture
Ductile-brittle transition
Grain boundaries
High strength low alloy steels
Impact strength
Impact tests
Martensite
Martensitic transformations
Materials Science
Mechanical properties
Metallic Materials
Morphology
Nanotechnology
Organometallic Chemistry
Scanning electron microscopy
Software
Spectroscopy/Spectrometry
Steel
Tensile strength
Tribology
Yield stress
title Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Variant%20Pairing%20to%20Enhance%20Impact%20Toughness%20in%20High-Strength%20Low-Alloy%20Steels%20via%20Trace%20Carbon%20Addition&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Yu,%20Yi-Shuang&rft.date=2021-06-01&rft.volume=34&rft.issue=6&rft.spage=755&rft.epage=764&rft.pages=755-764&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-020-01186-x&rft_dat=%3Cproquest_cross%3E2933040022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d658a1e721c56305e0a3d5ad682e75902f0a49f6cb27657b0d5093e722eaaec83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933040022&rft_id=info:pmid/&rfr_iscdi=true