Loading…
Inkjet−Printable Nanoporous Ag Disk Arrays Enabling Coffee−Ring Effect−Driven Analyte Enrichment Towards Practical SERS Applications
To make surface enhanced Raman scattering (SERS) sensors more practical, we propose nanoporous Ag disks as SERS-active plasmonic structures that can be readily inkjet-printed just before use to avoid degradation of SERS enhancement. Together with the aid of the enhanced plasmonic fields from the nan...
Saved in:
Published in: | International journal of precision engineering and manufacturing-green technology 2022-03, Vol.9 (2), p.421-429 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To make surface enhanced Raman scattering (SERS) sensors more practical, we propose nanoporous Ag disks as SERS-active plasmonic structures that can be readily inkjet-printed just before use to avoid degradation of SERS enhancement. Together with the aid of the enhanced plasmonic fields from the nanoporous Ag (confirmed by electromagnetic simulation), we utilize a coffee-ring effect to concentrate target analytes, which is demonstrated by confocal Raman measurements. By using the proposed SERS sensor, Raman signals of TiO2 nanoparticles with a concentration of ppm to sub-ppb have been successfully measured. TiO2 in commercial consumables has been also detected by distinguishing its crystalline phase. |
---|---|
ISSN: | 2288-6206 2198-0810 |
DOI: | 10.1007/s40684-021-00351-6 |