Loading…
Non-verbal communication translator for speech impaired using CNN
Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Norm...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2942 |
creator | Ramachandro, M. Reddy Gunna, Shivani Saahithi, Doma Manvith, Gundeti Sai |
description | Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number. |
doi_str_mv | 10.1063/5.0199401 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2933183881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933183881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oOCO6FjbtO8lkPxBUPdKLgLaSbRDH2ZtIL_3ujM4nI23733nIPQNeA1YEbu6BqDlBWGE5QBpVBwBuwUZRjLqigr8n6OLmLcY1xKzkWGNs04FN82tLrLzdj3y-CNnv045HPQQ-z0PIbcpYmTteYz9_2kfbC7fIl--MjrprlEZ0530V4ddYXeHu5f66di-_L4XG-2xQRMJB_gmGCauNK1uhScQ0Ww5SApGNYmZ8SAoMIK44ADda1N5M5RnratYJKs0M3h7hTGr8XGWe3HJQzppSolISCIEJCo2wMVjZ__g6gp-F6HHwVY_VWkqDpWRH4B3GFXCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2933183881</pqid></control><display><type>conference_proceeding</type><title>Non-verbal communication translator for speech impaired using CNN</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai</creator><contributor>Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</contributor><creatorcontrib>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai ; Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</creatorcontrib><description>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alphabets ; People with disabilities ; Task complexity ; Translators ; Verbal communication</subject><ispartof>AIP conference proceedings, 2024, Vol.2942 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Jabbar, M. A.</contributor><contributor>Ravindra, J. V. R.</contributor><contributor>Kumar, G.A.E. Satish</contributor><creatorcontrib>Ramachandro, M.</creatorcontrib><creatorcontrib>Reddy Gunna, Shivani</creatorcontrib><creatorcontrib>Saahithi, Doma</creatorcontrib><creatorcontrib>Manvith, Gundeti Sai</creatorcontrib><title>Non-verbal communication translator for speech impaired using CNN</title><title>AIP conference proceedings</title><description>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</description><subject>Alphabets</subject><subject>People with disabilities</subject><subject>Task complexity</subject><subject>Translators</subject><subject>Verbal communication</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oOCO6FjbtO8lkPxBUPdKLgLaSbRDH2ZtIL_3ujM4nI23733nIPQNeA1YEbu6BqDlBWGE5QBpVBwBuwUZRjLqigr8n6OLmLcY1xKzkWGNs04FN82tLrLzdj3y-CNnv045HPQQ-z0PIbcpYmTteYz9_2kfbC7fIl--MjrprlEZ0530V4ddYXeHu5f66di-_L4XG-2xQRMJB_gmGCauNK1uhScQ0Ww5SApGNYmZ8SAoMIK44ADda1N5M5RnratYJKs0M3h7hTGr8XGWe3HJQzppSolISCIEJCo2wMVjZ__g6gp-F6HHwVY_VWkqDpWRH4B3GFXCQ</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Ramachandro, M.</creator><creator>Reddy Gunna, Shivani</creator><creator>Saahithi, Doma</creator><creator>Manvith, Gundeti Sai</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240229</creationdate><title>Non-verbal communication translator for speech impaired using CNN</title><author>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alphabets</topic><topic>People with disabilities</topic><topic>Task complexity</topic><topic>Translators</topic><topic>Verbal communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramachandro, M.</creatorcontrib><creatorcontrib>Reddy Gunna, Shivani</creatorcontrib><creatorcontrib>Saahithi, Doma</creatorcontrib><creatorcontrib>Manvith, Gundeti Sai</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramachandro, M.</au><au>Reddy Gunna, Shivani</au><au>Saahithi, Doma</au><au>Manvith, Gundeti Sai</au><au>Jabbar, M. A.</au><au>Ravindra, J. V. R.</au><au>Kumar, G.A.E. Satish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-verbal communication translator for speech impaired using CNN</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-29</date><risdate>2024</risdate><volume>2942</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199401</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2942 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2933183881 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Alphabets People with disabilities Task complexity Translators Verbal communication |
title | Non-verbal communication translator for speech impaired using CNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-verbal%20communication%20translator%20for%20speech%20impaired%20using%20CNN&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramachandro,%20M.&rft.date=2024-02-29&rft.volume=2942&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199401&rft_dat=%3Cproquest_scita%3E2933183881%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933183881&rft_id=info:pmid/&rfr_iscdi=true |