Loading…

Non-verbal communication translator for speech impaired using CNN

Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Norm...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramachandro, M., Reddy Gunna, Shivani, Saahithi, Doma, Manvith, Gundeti Sai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2942
creator Ramachandro, M.
Reddy Gunna, Shivani
Saahithi, Doma
Manvith, Gundeti Sai
description Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.
doi_str_mv 10.1063/5.0199401
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2933183881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933183881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oOCO6FjbtO8lkPxBUPdKLgLaSbRDH2ZtIL_3ujM4nI23733nIPQNeA1YEbu6BqDlBWGE5QBpVBwBuwUZRjLqigr8n6OLmLcY1xKzkWGNs04FN82tLrLzdj3y-CNnv045HPQQ-z0PIbcpYmTteYz9_2kfbC7fIl--MjrprlEZ0530V4ddYXeHu5f66di-_L4XG-2xQRMJB_gmGCauNK1uhScQ0Ww5SApGNYmZ8SAoMIK44ADda1N5M5RnratYJKs0M3h7hTGr8XGWe3HJQzppSolISCIEJCo2wMVjZ__g6gp-F6HHwVY_VWkqDpWRH4B3GFXCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2933183881</pqid></control><display><type>conference_proceeding</type><title>Non-verbal communication translator for speech impaired using CNN</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai</creator><contributor>Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</contributor><creatorcontrib>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai ; Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</creatorcontrib><description>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alphabets ; People with disabilities ; Task complexity ; Translators ; Verbal communication</subject><ispartof>AIP conference proceedings, 2024, Vol.2942 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Jabbar, M. A.</contributor><contributor>Ravindra, J. V. R.</contributor><contributor>Kumar, G.A.E. Satish</contributor><creatorcontrib>Ramachandro, M.</creatorcontrib><creatorcontrib>Reddy Gunna, Shivani</creatorcontrib><creatorcontrib>Saahithi, Doma</creatorcontrib><creatorcontrib>Manvith, Gundeti Sai</creatorcontrib><title>Non-verbal communication translator for speech impaired using CNN</title><title>AIP conference proceedings</title><description>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</description><subject>Alphabets</subject><subject>People with disabilities</subject><subject>Task complexity</subject><subject>Translators</subject><subject>Verbal communication</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oOCO6FjbtO8lkPxBUPdKLgLaSbRDH2ZtIL_3ujM4nI23733nIPQNeA1YEbu6BqDlBWGE5QBpVBwBuwUZRjLqigr8n6OLmLcY1xKzkWGNs04FN82tLrLzdj3y-CNnv045HPQQ-z0PIbcpYmTteYz9_2kfbC7fIl--MjrprlEZ0530V4ddYXeHu5f66di-_L4XG-2xQRMJB_gmGCauNK1uhScQ0Ww5SApGNYmZ8SAoMIK44ADda1N5M5RnratYJKs0M3h7hTGr8XGWe3HJQzppSolISCIEJCo2wMVjZ__g6gp-F6HHwVY_VWkqDpWRH4B3GFXCQ</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Ramachandro, M.</creator><creator>Reddy Gunna, Shivani</creator><creator>Saahithi, Doma</creator><creator>Manvith, Gundeti Sai</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240229</creationdate><title>Non-verbal communication translator for speech impaired using CNN</title><author>Ramachandro, M. ; Reddy Gunna, Shivani ; Saahithi, Doma ; Manvith, Gundeti Sai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alphabets</topic><topic>People with disabilities</topic><topic>Task complexity</topic><topic>Translators</topic><topic>Verbal communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramachandro, M.</creatorcontrib><creatorcontrib>Reddy Gunna, Shivani</creatorcontrib><creatorcontrib>Saahithi, Doma</creatorcontrib><creatorcontrib>Manvith, Gundeti Sai</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramachandro, M.</au><au>Reddy Gunna, Shivani</au><au>Saahithi, Doma</au><au>Manvith, Gundeti Sai</au><au>Jabbar, M. A.</au><au>Ravindra, J. V. R.</au><au>Kumar, G.A.E. Satish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-verbal communication translator for speech impaired using CNN</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-29</date><risdate>2024</risdate><volume>2942</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Disability makes communication difficult. This paper’s tasks study the identification of ISL characters (ISL). Due of its complexity and considerable hand gestures, this activity has a huge societal effect, yet it’s challenging. They need a mediator who can translate sign language into writing. Normal people can’t fully comprehend disabled people’s gestures, thus they require a translator. With a sign-language translator, communication is two-way. We can’t always look for a translator. We need a platform that identifies alphabets and numbers as text. Hearing-impaired people employ nonverbal sign language. Webcams capture hand motions. We used CNN classifier. We obtain 90-95 percent accuracy after training our model using the Kaggle Indian Sign Language hand dataset, which has 1200 photos for each alphabet and number.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199401</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2942 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2933183881
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Alphabets
People with disabilities
Task complexity
Translators
Verbal communication
title Non-verbal communication translator for speech impaired using CNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-verbal%20communication%20translator%20for%20speech%20impaired%20using%20CNN&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramachandro,%20M.&rft.date=2024-02-29&rft.volume=2942&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199401&rft_dat=%3Cproquest_scita%3E2933183881%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1681-71f686a3f2fba28771430e71951c6b2433c1858e8cf1715fbef2fdf57168e8693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933183881&rft_id=info:pmid/&rfr_iscdi=true