Loading…

Seed Priming with Salicylic Acid Minimizes Oxidative Effects of Aluminum on Trifolium Seedlings

Aluminum (Al) toxicity is one of the main aspects restricting the development of fabaceous plants grown in soils with spontaneous vegetation prevalence in temperate climate zones. Salicylic acid (SA) minimizes the effects of stress on plants. Therefore, the aim of the current study was to evaluate t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of soil science and plant nutrition 2020-12, Vol.20 (4), p.2502-2511
Main Authors: Bortolin, Gabriel Streck, Teixeira, Sheila Bigolin, de Mesquita Pinheiro, Romário, Ávila, Gabriele Espinel, Carlos, Filipe Selau, da Silva Pedroso, Carlos Eduardo, Deuner, Sidnei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aluminum (Al) toxicity is one of the main aspects restricting the development of fabaceous plants grown in soils with spontaneous vegetation prevalence in temperate climate zones. Salicylic acid (SA) minimizes the effects of stress on plants. Therefore, the aim of the current study was to evaluate the ability of SA seed priming to mitigate the effects of Al on seed germination and seedling performance in two Trifolium species. Trifolium vesiculosum (annual) and Trifolium repens (perennial) seeds were primed in solution added, or not, with SA (25 μM) and placed on germination paper moistened with aluminum sulfate (Al 2 (SO 4 ) 3 ) solutions at three different doses: 0 mM (control), 0.25 mM (moderate dose), and 1.25 mM (high dose). Seed priming with SA has mitigated the global toxicity effects of Al on T. vesiculosum and T. repens seedlings. Inferior damages were observed in T. vesiculosum root length and dry mass and in T. repens shoot dry mass, after SA pretreatment. T. vesiculosum seed priming with SA in the presence of Al has significantly reduced the osmotic potential of seedling sap. Salicylic acid (SA) has also enabled increased antioxidant activity of enzymes such as superoxide dismutase (SOD) in the two investigated plant species and ascorbate peroxidase (APX) in T. repens . In addition to the increased antioxidant activity, SA-primed seeds reduced the malondialdehyde content in T. vesiculosum seedlings exposed to Al. Overall, seed priming with SA mitigates oxidative effects of Al and improves T. vesiculosum and T. repens seedling performance in the presence of this element.
ISSN:0718-9508
0718-9516
DOI:10.1007/s42729-020-00316-9