Loading…
A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent
In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for e...
Saved in:
Published in: | International journal of fuzzy systems 2016-10, Vol.18 (5), p.894-903 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53 |
container_end_page | 903 |
container_issue | 5 |
container_start_page | 894 |
container_title | International journal of fuzzy systems |
container_volume | 18 |
creator | Son, Le Hoang Van Hai, Pham |
description | In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods. |
doi_str_mv | 10.1007/s40815-015-0117-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933338227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933338227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIVKU_gM0Sc8Bnx0k8lgKlUgtLxRo5zpUahSTYDqj99aQNEiyc9HTD-9DdI-QS2DUwlt74mGUgI3YEpBGckBEHpSLBAU7JCGTCIx6n6pxMvLcFE8ATIRMxIs2UPjWfWNFVVwXbVkgfuv1-R2dV5wM6W7_SFYZtU9Jb7bGkTU0XdU_UuvqredGVLXWwPb1C7TuHnn7ZsKVzp0uLdaB36E2_L8jZRlceJz97TNYP9-vZY7R8ni9m02VkRKxCFGPBmULcFFJmAgANGGGMUllccs1EyTRTSqRo0jgDLhlmqAqWgFS81FKMydUQ27rmo0Mf8remOxztc65EPxnnaa-CQWVc473DTd46-67dLgeWH5rNh2ZzdgSkOfQePnh8e_gc3W_y_6Zv-A97pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933338227</pqid></control><display><type>article</type><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><source>Springer Nature</source><creator>Son, Le Hoang ; Van Hai, Pham</creator><creatorcontrib>Son, Le Hoang ; Van Hai, Pham</creatorcontrib><description>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-015-0117-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Data compression ; Engineering ; Machine learning ; Management Science ; Methods ; Operations Research ; Pattern recognition ; Similarity</subject><ispartof>International journal of fuzzy systems, 2016-10, Vol.18 (5), p.894-903</ispartof><rights>Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</citedby><cites>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Son, Le Hoang</creatorcontrib><creatorcontrib>Van Hai, Pham</creatorcontrib><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Data compression</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Management Science</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Pattern recognition</subject><subject>Similarity</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIVKU_gM0Sc8Bnx0k8lgKlUgtLxRo5zpUahSTYDqj99aQNEiyc9HTD-9DdI-QS2DUwlt74mGUgI3YEpBGckBEHpSLBAU7JCGTCIx6n6pxMvLcFE8ATIRMxIs2UPjWfWNFVVwXbVkgfuv1-R2dV5wM6W7_SFYZtU9Jb7bGkTU0XdU_UuvqredGVLXWwPb1C7TuHnn7ZsKVzp0uLdaB36E2_L8jZRlceJz97TNYP9-vZY7R8ni9m02VkRKxCFGPBmULcFFJmAgANGGGMUllccs1EyTRTSqRo0jgDLhlmqAqWgFS81FKMydUQ27rmo0Mf8remOxztc65EPxnnaa-CQWVc473DTd46-67dLgeWH5rNh2ZzdgSkOfQePnh8e_gc3W_y_6Zv-A97pw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Son, Le Hoang</creator><creator>Van Hai, Pham</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20161001</creationdate><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><author>Son, Le Hoang ; Van Hai, Pham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Data compression</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Management Science</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Pattern recognition</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Le Hoang</creatorcontrib><creatorcontrib>Van Hai, Pham</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Le Hoang</au><au>Van Hai, Pham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>18</volume><issue>5</issue><spage>894</spage><epage>903</epage><pages>894-903</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-015-0117-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1562-2479 |
ispartof | International journal of fuzzy systems, 2016-10, Vol.18 (5), p.894-903 |
issn | 1562-2479 2199-3211 |
language | eng |
recordid | cdi_proquest_journals_2933338227 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Clustering Computational Intelligence Data compression Engineering Machine learning Management Science Methods Operations Research Pattern recognition Similarity |
title | A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Multiple%20Fuzzy%20Clustering%20Method%20Based%20on%20Internal%20Clustering%20Validation%20Measures%20with%20Gradient%20Descent&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Son,%20Le%20Hoang&rft.date=2016-10-01&rft.volume=18&rft.issue=5&rft.spage=894&rft.epage=903&rft.pages=894-903&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-015-0117-1&rft_dat=%3Cproquest_cross%3E2933338227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933338227&rft_id=info:pmid/&rfr_iscdi=true |