Loading…

A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent

In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for e...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems 2016-10, Vol.18 (5), p.894-903
Main Authors: Son, Le Hoang, Van Hai, Pham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53
cites cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53
container_end_page 903
container_issue 5
container_start_page 894
container_title International journal of fuzzy systems
container_volume 18
creator Son, Le Hoang
Van Hai, Pham
description In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.
doi_str_mv 10.1007/s40815-015-0117-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933338227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933338227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIVKU_gM0Sc8Bnx0k8lgKlUgtLxRo5zpUahSTYDqj99aQNEiyc9HTD-9DdI-QS2DUwlt74mGUgI3YEpBGckBEHpSLBAU7JCGTCIx6n6pxMvLcFE8ATIRMxIs2UPjWfWNFVVwXbVkgfuv1-R2dV5wM6W7_SFYZtU9Jb7bGkTU0XdU_UuvqredGVLXWwPb1C7TuHnn7ZsKVzp0uLdaB36E2_L8jZRlceJz97TNYP9-vZY7R8ni9m02VkRKxCFGPBmULcFFJmAgANGGGMUllccs1EyTRTSqRo0jgDLhlmqAqWgFS81FKMydUQ27rmo0Mf8remOxztc65EPxnnaa-CQWVc473DTd46-67dLgeWH5rNh2ZzdgSkOfQePnh8e_gc3W_y_6Zv-A97pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933338227</pqid></control><display><type>article</type><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><source>Springer Nature</source><creator>Son, Le Hoang ; Van Hai, Pham</creator><creatorcontrib>Son, Le Hoang ; Van Hai, Pham</creatorcontrib><description>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-015-0117-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Data compression ; Engineering ; Machine learning ; Management Science ; Methods ; Operations Research ; Pattern recognition ; Similarity</subject><ispartof>International journal of fuzzy systems, 2016-10, Vol.18 (5), p.894-903</ispartof><rights>Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</citedby><cites>FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Son, Le Hoang</creatorcontrib><creatorcontrib>Van Hai, Pham</creatorcontrib><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Data compression</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Management Science</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Pattern recognition</subject><subject>Similarity</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIVKU_gM0Sc8Bnx0k8lgKlUgtLxRo5zpUahSTYDqj99aQNEiyc9HTD-9DdI-QS2DUwlt74mGUgI3YEpBGckBEHpSLBAU7JCGTCIx6n6pxMvLcFE8ATIRMxIs2UPjWfWNFVVwXbVkgfuv1-R2dV5wM6W7_SFYZtU9Jb7bGkTU0XdU_UuvqredGVLXWwPb1C7TuHnn7ZsKVzp0uLdaB36E2_L8jZRlceJz97TNYP9-vZY7R8ni9m02VkRKxCFGPBmULcFFJmAgANGGGMUllccs1EyTRTSqRo0jgDLhlmqAqWgFS81FKMydUQ27rmo0Mf8remOxztc65EPxnnaa-CQWVc473DTd46-67dLgeWH5rNh2ZzdgSkOfQePnh8e_gc3W_y_6Zv-A97pw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Son, Le Hoang</creator><creator>Van Hai, Pham</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20161001</creationdate><title>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</title><author>Son, Le Hoang ; Van Hai, Pham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Data compression</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Management Science</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Pattern recognition</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Le Hoang</creatorcontrib><creatorcontrib>Van Hai, Pham</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Le Hoang</au><au>Van Hai, Pham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>18</volume><issue>5</issue><spage>894</spage><epage>903</epage><pages>894-903</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>In this paper, we propose a novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Firstly, some single fuzzy clustering algorithms such as Fuzzy C-Means, Kernel Fuzzy C-Means and Gustafson–Kessel are used to construct similarity matrixes for each partition. Secondly, those similarity matrixes are aggregated into a final one by means of the direct sum of weighted vectors where the values of weights are determined by internal clustering validation measures. Finally, final membership matrix is calculated by minimizing the sum of square errors through the gradient descent method. The proposed approach has been validated in terms of clustering quality on UCI Machine Learning Repository datasets. Experimental results show that the proposed approach’s performance is better than those of other ensemble and standalone methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-015-0117-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2016-10, Vol.18 (5), p.894-903
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_2933338227
source Springer Nature
subjects Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Data compression
Engineering
Machine learning
Management Science
Methods
Operations Research
Pattern recognition
Similarity
title A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Multiple%20Fuzzy%20Clustering%20Method%20Based%20on%20Internal%20Clustering%20Validation%20Measures%20with%20Gradient%20Descent&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Son,%20Le%20Hoang&rft.date=2016-10-01&rft.volume=18&rft.issue=5&rft.spage=894&rft.epage=903&rft.pages=894-903&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-015-0117-1&rft_dat=%3Cproquest_cross%3E2933338227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4eb209eefb558311ec1c3cc9984d2a03d0a09937ec7481250e8e9b061592da53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933338227&rft_id=info:pmid/&rfr_iscdi=true