Loading…

Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications

Magnesium-based materials have promising mechanical properties and potential to serve as implants for loadbearing temporary applications. The main concern about such implants is their strength and resistance for the acting forces. In this investigation, magnesium-based biodegradable Mg 65 Zn 30 Ca 4...

Full description

Saved in:
Bibliographic Details
Published in:Archives of Civil and Mechanical Engineering 2018-09, Vol.18 (4), p.1288-1299
Main Authors: Lesz, S., Kraczla, J., Nowosielski, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnesium-based materials have promising mechanical properties and potential to serve as implants for loadbearing temporary applications. The main concern about such implants is their strength and resistance for the acting forces. In this investigation, magnesium-based biodegradable Mg 65 Zn 30 Ca 4 Gd 1 alloy prepared by combination of innovative Mechanical Alloying (MA) and Spark Plasma Sintering (SPS) methods, was studied for the structure and mechanical properties. Structural studies were performed using X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRD studies were conducted to gain an overview of the phase composition in powdered and sintered samples. The energy dispersive spectroscopy (EDS) additionally determine the chemical composition of the samples. SEM observations were used to examine the morphology of the sinters on the fractured surface after the compressive tests. Mechanical properties of the Mg 65 Zn 30 Ca 4 Gd 1 alloy were examined by compressive tests, to determine the compressive strength and Young’s modulus of the samples at room temperature. The paper provides information about the density and porosity of the Mg-based alloy and additionally its corrosion resistance. Moreover the work shows advantages and possibilities of forming multi-compound, morphologically homogeneous alloys with high mechanical properties in the powder metallurgy processes.
ISSN:1644-9665
2083-3318
DOI:10.1016/j.acme.2018.04.002