Loading…

Hybrid Intelligent Algorithm for Indoor Path Planning and Trajectory-Tracking Control of Wheeled Mobile Robot

This paper presents a hybrid intelligent algorithm for a wheeled mobile robot (WMR) to implement both trajectory-tracking and path-following navigation missions. The novel control scheme combining the kinematic with TSK fuzzy control is developed to track the desired position, linear, and angular ve...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems 2016-08, Vol.18 (4), p.595-608
Main Authors: Li, I-Hsum, Chien, Yi-Hsing, Wang, Wei-Yen, Kao, Yi-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a hybrid intelligent algorithm for a wheeled mobile robot (WMR) to implement both trajectory-tracking and path-following navigation missions. The novel control scheme combining the kinematic with TSK fuzzy control is developed to track the desired position, linear, and angular velocities, even though the WMR suffers from system uncertainties and disturbances. The proposed TSK fuzzy controller deals with a general dynamic model and has a good ability of disturbance rejection. For the path-following issue, the improved D* lite algorithm determines an appropriate path between an initial position and a destination. The derived path is transformed into a tracking trajectory by a function of time. The asymptotic stability of the overall system is proven by Lyapunov theory. Finally, real-time experiments with the use of the proposed hybrid intelligent algorithm on an eight-shaped reference trajectory and long-distance movement demonstrate the feasibility of practical WMR maneuvers.
ISSN:1562-2479
2199-3211
DOI:10.1007/s40815-016-0166-0