Loading…

Fuzzy Quadrature Particle Filter for Maneuvering Target Tracking

In this paper, a novel fuzzy quadrature particle filter (FQPF) based on maximum entropy fuzzy clustering for maneuvering target tracking is proposed. The novelties of the fuzzy quadrature particle filter are in the update step in which the predicted and posterior probability density functions are ap...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems 2016-08, Vol.18 (4), p.647-658
Main Authors: Li, Liang-qun, Li, Chun-lan, Cao, Wen-ming, Liu, Zong-Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a novel fuzzy quadrature particle filter (FQPF) based on maximum entropy fuzzy clustering for maneuvering target tracking is proposed. The novelties of the fuzzy quadrature particle filter are in the update step in which the predicted and posterior probability density functions are approximated by introducing a set of quadrature point probability densities based on the Gauss–Hermite quadrature rule as a Gaussian. The particle and quadrature point weights can be adaptively estimated based on the weighting exponent and fuzzy membership degrees provided by a modified version of maximum entropy fuzzy clustering algorithm. Unlike the Gaussian particle filter (GPF) using the prior distribution as the proposal distribution, the new FQPF uses a set of modified quadrature point probability densities as the proposal distribution that can effectively enhance the diversity of samples and improve the approximate performance. Finally, simulation results are presented to demonstrate the versatility and improved performance of the fuzzy quadrature particle filter over other nonlinear filtering approaches, namely the unscented Kalman filter, quadrature Kalman filter, particle filter, and GPF, to solve maneuvering target tracking problems.
ISSN:1562-2479
2199-3211
DOI:10.1007/s40815-015-0105-5