Loading…

Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch

Malaysia is one of the largest producers of crude palm oil, which also produces abundant empty fruit bunch (EFB) as a lignocellulosic waste. Levulinic acid (LA) is a promising chemical building block that can be produced from acid-hydrolysed EFB, via dehydration-hydration reactions. This work has ev...

Full description

Saved in:
Bibliographic Details
Published in:Process integration and optimization for sustainability 2020-03, Vol.4 (1), p.37-50
Main Authors: Hafyan, R. H., Bhullar, L., Putra, Z. A., Bilad, M. R., Wirzal, M. D. H., Nordin, N. A. H. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3
cites cdi_FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3
container_end_page 50
container_issue 1
container_start_page 37
container_title Process integration and optimization for sustainability
container_volume 4
creator Hafyan, R. H.
Bhullar, L.
Putra, Z. A.
Bilad, M. R.
Wirzal, M. D. H.
Nordin, N. A. H. M.
description Malaysia is one of the largest producers of crude palm oil, which also produces abundant empty fruit bunch (EFB) as a lignocellulosic waste. Levulinic acid (LA) is a promising chemical building block that can be produced from acid-hydrolysed EFB, via dehydration-hydration reactions. This work has evaluated the sustainability aspects of LA production by simultaneously considering economic, environment, and safety aspects. These aspects were computed using net present value (NPV), global warming potential (GWP), and hazard identification and ranking (HIRA), respectively. Using HIRA, fire and explosion damage index (FEDI) and toxicity damage index (TDI) were also estimated. These conflicting objectives were solved using multi-objective optimization. Genetic algorithm (GA) was conducted in MATLAB to generate a Pareto-optimal front. The results show trade-offs among the objective functions and insights into how design/operating variables affect the sustainability aspects. The Pareto-optimal solutions reveal that at maximum EFB capacity of 100 ton/h, maximum NPV of 6.4 billion USD is achieved. However, at this point, the values of GWP and TDI are at a maximum of 174,041 kg CO 2 -eq and 402.9, respectively. At minimum EFB capacity of 50 ton/h, only minimum NPV of 2.7 billion USD is achieved. Nevertheless, at this point, the values of GWP and TDI are at a minimum of 86,691 kg CO 2 -eq and 283.3, respectively.
doi_str_mv 10.1007/s41660-019-00097-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933561059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933561059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIsoOOb-AU8Bz9WXJm3a4xybChMF9Sghyw_NaJuZpIP990YrevP03uH73oMvy84xXGIAdhUorirIATc5ADQsp0fZpCihyWlBq-PfndSn2SyEbYIKRmgNdJK93g9ttLnbbLWMdq_R0xCisL3Y2NbGA5qHoEPodB-RM2it90NreyvRXFqFHr1TQ9Jcj4x3HVp2u6Ss_GAjuh56-X6WnRjRBj37mdPsZbV8Xtzm64ebu8V8nUuCm5gTwZQypqBqYyRoJktlBFGkpg0TYCgjkjFKsagrJTRmujCgNWCMiSAFKDLNLsa7O-8-Bh0i37rB9-klLxpCygpD2SSqGCnpXQheG77zthP-wDHwr5J8LMlTSf5dktMkkVEKCe7ftP87_Y_1Cfn5d08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933561059</pqid></control><display><type>article</type><title>Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch</title><source>Springer Nature</source><creator>Hafyan, R. H. ; Bhullar, L. ; Putra, Z. A. ; Bilad, M. R. ; Wirzal, M. D. H. ; Nordin, N. A. H. M.</creator><creatorcontrib>Hafyan, R. H. ; Bhullar, L. ; Putra, Z. A. ; Bilad, M. R. ; Wirzal, M. D. H. ; Nordin, N. A. H. M.</creatorcontrib><description>Malaysia is one of the largest producers of crude palm oil, which also produces abundant empty fruit bunch (EFB) as a lignocellulosic waste. Levulinic acid (LA) is a promising chemical building block that can be produced from acid-hydrolysed EFB, via dehydration-hydration reactions. This work has evaluated the sustainability aspects of LA production by simultaneously considering economic, environment, and safety aspects. These aspects were computed using net present value (NPV), global warming potential (GWP), and hazard identification and ranking (HIRA), respectively. Using HIRA, fire and explosion damage index (FEDI) and toxicity damage index (TDI) were also estimated. These conflicting objectives were solved using multi-objective optimization. Genetic algorithm (GA) was conducted in MATLAB to generate a Pareto-optimal front. The results show trade-offs among the objective functions and insights into how design/operating variables affect the sustainability aspects. The Pareto-optimal solutions reveal that at maximum EFB capacity of 100 ton/h, maximum NPV of 6.4 billion USD is achieved. However, at this point, the values of GWP and TDI are at a maximum of 174,041 kg CO 2 -eq and 402.9, respectively. At minimum EFB capacity of 50 ton/h, only minimum NPV of 2.7 billion USD is achieved. Nevertheless, at this point, the values of GWP and TDI are at a minimum of 86,691 kg CO 2 -eq and 283.3, respectively.</description><identifier>ISSN: 2509-4238</identifier><identifier>EISSN: 2509-4246</identifier><identifier>DOI: 10.1007/s41660-019-00097-4</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Acid production ; Biomass ; Carbon dioxide ; Climate change ; Dehydration ; Design of experiments ; Economic analysis ; Economics and Management ; Energy Policy ; Engineering ; Environmental impact ; Enzymes ; Fire damage ; Fruits ; Genetic algorithms ; Global warming ; Hazard identification ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Levulinic acid ; Lignocellulose ; Linear programming ; Multiple objective analysis ; Net present value ; Optimization ; Original Research Paper ; Palm oil ; Pareto optimization ; Pareto optimum ; Raw materials ; Reactors ; Simulation ; Sustainability ; Sustainable Development ; Toxicity ; Waste Management/Waste Technology</subject><ispartof>Process integration and optimization for sustainability, 2020-03, Vol.4 (1), p.37-50</ispartof><rights>Springer Nature Singapore Pte Ltd. 2019</rights><rights>Springer Nature Singapore Pte Ltd. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3</citedby><cites>FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hafyan, R. H.</creatorcontrib><creatorcontrib>Bhullar, L.</creatorcontrib><creatorcontrib>Putra, Z. A.</creatorcontrib><creatorcontrib>Bilad, M. R.</creatorcontrib><creatorcontrib>Wirzal, M. D. H.</creatorcontrib><creatorcontrib>Nordin, N. A. H. M.</creatorcontrib><title>Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch</title><title>Process integration and optimization for sustainability</title><addtitle>Process Integr Optim Sustain</addtitle><description>Malaysia is one of the largest producers of crude palm oil, which also produces abundant empty fruit bunch (EFB) as a lignocellulosic waste. Levulinic acid (LA) is a promising chemical building block that can be produced from acid-hydrolysed EFB, via dehydration-hydration reactions. This work has evaluated the sustainability aspects of LA production by simultaneously considering economic, environment, and safety aspects. These aspects were computed using net present value (NPV), global warming potential (GWP), and hazard identification and ranking (HIRA), respectively. Using HIRA, fire and explosion damage index (FEDI) and toxicity damage index (TDI) were also estimated. These conflicting objectives were solved using multi-objective optimization. Genetic algorithm (GA) was conducted in MATLAB to generate a Pareto-optimal front. The results show trade-offs among the objective functions and insights into how design/operating variables affect the sustainability aspects. The Pareto-optimal solutions reveal that at maximum EFB capacity of 100 ton/h, maximum NPV of 6.4 billion USD is achieved. However, at this point, the values of GWP and TDI are at a maximum of 174,041 kg CO 2 -eq and 402.9, respectively. At minimum EFB capacity of 50 ton/h, only minimum NPV of 2.7 billion USD is achieved. Nevertheless, at this point, the values of GWP and TDI are at a minimum of 86,691 kg CO 2 -eq and 283.3, respectively.</description><subject>Acid production</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Dehydration</subject><subject>Design of experiments</subject><subject>Economic analysis</subject><subject>Economics and Management</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Environmental impact</subject><subject>Enzymes</subject><subject>Fire damage</subject><subject>Fruits</subject><subject>Genetic algorithms</subject><subject>Global warming</subject><subject>Hazard identification</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Levulinic acid</subject><subject>Lignocellulose</subject><subject>Linear programming</subject><subject>Multiple objective analysis</subject><subject>Net present value</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Palm oil</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Raw materials</subject><subject>Reactors</subject><subject>Simulation</subject><subject>Sustainability</subject><subject>Sustainable Development</subject><subject>Toxicity</subject><subject>Waste Management/Waste Technology</subject><issn>2509-4238</issn><issn>2509-4246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIsoOOb-AU8Bz9WXJm3a4xybChMF9Sghyw_NaJuZpIP990YrevP03uH73oMvy84xXGIAdhUorirIATc5ADQsp0fZpCihyWlBq-PfndSn2SyEbYIKRmgNdJK93g9ttLnbbLWMdq_R0xCisL3Y2NbGA5qHoEPodB-RM2it90NreyvRXFqFHr1TQ9Jcj4x3HVp2u6Ss_GAjuh56-X6WnRjRBj37mdPsZbV8Xtzm64ebu8V8nUuCm5gTwZQypqBqYyRoJktlBFGkpg0TYCgjkjFKsagrJTRmujCgNWCMiSAFKDLNLsa7O-8-Bh0i37rB9-klLxpCygpD2SSqGCnpXQheG77zthP-wDHwr5J8LMlTSf5dktMkkVEKCe7ftP87_Y_1Cfn5d08</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Hafyan, R. H.</creator><creator>Bhullar, L.</creator><creator>Putra, Z. A.</creator><creator>Bilad, M. R.</creator><creator>Wirzal, M. D. H.</creator><creator>Nordin, N. A. H. M.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>20200301</creationdate><title>Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch</title><author>Hafyan, R. H. ; Bhullar, L. ; Putra, Z. A. ; Bilad, M. R. ; Wirzal, M. D. H. ; Nordin, N. A. H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid production</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Dehydration</topic><topic>Design of experiments</topic><topic>Economic analysis</topic><topic>Economics and Management</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Environmental impact</topic><topic>Enzymes</topic><topic>Fire damage</topic><topic>Fruits</topic><topic>Genetic algorithms</topic><topic>Global warming</topic><topic>Hazard identification</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Levulinic acid</topic><topic>Lignocellulose</topic><topic>Linear programming</topic><topic>Multiple objective analysis</topic><topic>Net present value</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Palm oil</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Raw materials</topic><topic>Reactors</topic><topic>Simulation</topic><topic>Sustainability</topic><topic>Sustainable Development</topic><topic>Toxicity</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafyan, R. H.</creatorcontrib><creatorcontrib>Bhullar, L.</creatorcontrib><creatorcontrib>Putra, Z. A.</creatorcontrib><creatorcontrib>Bilad, M. R.</creatorcontrib><creatorcontrib>Wirzal, M. D. H.</creatorcontrib><creatorcontrib>Nordin, N. A. H. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Process integration and optimization for sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafyan, R. H.</au><au>Bhullar, L.</au><au>Putra, Z. A.</au><au>Bilad, M. R.</au><au>Wirzal, M. D. H.</au><au>Nordin, N. A. H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch</atitle><jtitle>Process integration and optimization for sustainability</jtitle><stitle>Process Integr Optim Sustain</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>2509-4238</issn><eissn>2509-4246</eissn><abstract>Malaysia is one of the largest producers of crude palm oil, which also produces abundant empty fruit bunch (EFB) as a lignocellulosic waste. Levulinic acid (LA) is a promising chemical building block that can be produced from acid-hydrolysed EFB, via dehydration-hydration reactions. This work has evaluated the sustainability aspects of LA production by simultaneously considering economic, environment, and safety aspects. These aspects were computed using net present value (NPV), global warming potential (GWP), and hazard identification and ranking (HIRA), respectively. Using HIRA, fire and explosion damage index (FEDI) and toxicity damage index (TDI) were also estimated. These conflicting objectives were solved using multi-objective optimization. Genetic algorithm (GA) was conducted in MATLAB to generate a Pareto-optimal front. The results show trade-offs among the objective functions and insights into how design/operating variables affect the sustainability aspects. The Pareto-optimal solutions reveal that at maximum EFB capacity of 100 ton/h, maximum NPV of 6.4 billion USD is achieved. However, at this point, the values of GWP and TDI are at a maximum of 174,041 kg CO 2 -eq and 402.9, respectively. At minimum EFB capacity of 50 ton/h, only minimum NPV of 2.7 billion USD is achieved. Nevertheless, at this point, the values of GWP and TDI are at a minimum of 86,691 kg CO 2 -eq and 283.3, respectively.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41660-019-00097-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2509-4238
ispartof Process integration and optimization for sustainability, 2020-03, Vol.4 (1), p.37-50
issn 2509-4238
2509-4246
language eng
recordid cdi_proquest_journals_2933561059
source Springer Nature
subjects Acid production
Biomass
Carbon dioxide
Climate change
Dehydration
Design of experiments
Economic analysis
Economics and Management
Energy Policy
Engineering
Environmental impact
Enzymes
Fire damage
Fruits
Genetic algorithms
Global warming
Hazard identification
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Levulinic acid
Lignocellulose
Linear programming
Multiple objective analysis
Net present value
Optimization
Original Research Paper
Palm oil
Pareto optimization
Pareto optimum
Raw materials
Reactors
Simulation
Sustainability
Sustainable Development
Toxicity
Waste Management/Waste Technology
title Multi-objective Sustainability Assessment of Levulinic Acid Production from Empty Fruit Bunch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20Sustainability%20Assessment%20of%20Levulinic%20Acid%20Production%20from%20Empty%20Fruit%20Bunch&rft.jtitle=Process%20integration%20and%20optimization%20for%20sustainability&rft.au=Hafyan,%20R.%20H.&rft.date=2020-03-01&rft.volume=4&rft.issue=1&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=2509-4238&rft.eissn=2509-4246&rft_id=info:doi/10.1007/s41660-019-00097-4&rft_dat=%3Cproquest_cross%3E2933561059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3a7ddff24dbfc0e7c5dfa3d38497a0f473c77441a86dae17e2f0ee01113a320d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933561059&rft_id=info:pmid/&rfr_iscdi=true