Loading…
Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability
In this work, we report an effective room-temperature passivation strategy for GaN-on-Si high-electron-mobility transistors (HEMTs) to improve device stability by introducing a spin-coated CYTOP organic passivation layer. This CYTOP coating can suppress the interface states of the devices to a low l...
Saved in:
Published in: | IEEE transactions on electron devices 2024-03, Vol.71 (3), p.1-5 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43 |
container_end_page | 5 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Zhang, Haochen Hu, Kunpeng Sun, Yue Yang, Lei Huang, Zhe Guo, Yifu Deng, Junyang Liang, Kun Xing, Zhanyong Wang, Hu Zhang, Mingshuo Chen, Yao Guo, Shiping Li, Mengmeng Sun, Haiding |
description | In this work, we report an effective room-temperature passivation strategy for GaN-on-Si high-electron-mobility transistors (HEMTs) to improve device stability by introducing a spin-coated CYTOP organic passivation layer. This CYTOP coating can suppress the interface states of the devices to a low level of \sim 10 ^{\text{12}} cm ^{-\text{2}}\cdot eV ^{-\text{1}} at a shallow energy trap of \sim 0.30 eV. As a result, improved device stability is realized, featuring reduced leakage current, smaller voltage hysteresis, reduced current collapse, and mitigated device degradation after long-term electrical stress. Besides, it is found that the CYTOP-passivated HEMT can operate with stable rectification behavior under an elevated temperature of 250 ^{\circ} C, confirming the high-temperature robustness of this organic passivation. These results highlight the potential of such room-temperature passivation strategy for further applications in electronic systems under complex conditions and harsh environments. |
doi_str_mv | 10.1109/TED.2023.3280863 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2933609674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10149536</ieee_id><sourcerecordid>2933609674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYjePXho4rnY9nXdejSAQIJiZIZj041OS9iK7SDhv3cED55eXvL5vh8fhO4ZHTBG1VM-Hg045TAAntFMwgXqsSRJiZJCXqIepSwjCjK4RjcxbrpWCsF7aPXhfU1yW-9sMO0-WLwIX6ZxJX43MbqDaZ1vcOUDnpg34huydHg6fs0jXrn2G8_qXfAHu8Yje3ClxcvWFG7r2uMtuqrMNtq7v9pHny_jfDgl88VkNnyek5Ir3hLgTMoiqzhYoErxRKi0NDwTRihIICt4mhZCcZ6Y7suiFAwosEwqyyqwawF99Hie293xs7ex1Ru_D023UnMFIKmS6YmiZ6oMPsZgK70LrjbhqBnVJ32606dP-vSfvi7ycI44a-0_nAmVgIRfLYNo-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933609674</pqid></control><display><type>article</type><title>Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Haochen ; Hu, Kunpeng ; Sun, Yue ; Yang, Lei ; Huang, Zhe ; Guo, Yifu ; Deng, Junyang ; Liang, Kun ; Xing, Zhanyong ; Wang, Hu ; Zhang, Mingshuo ; Chen, Yao ; Guo, Shiping ; Li, Mengmeng ; Sun, Haiding</creator><creatorcontrib>Zhang, Haochen ; Hu, Kunpeng ; Sun, Yue ; Yang, Lei ; Huang, Zhe ; Guo, Yifu ; Deng, Junyang ; Liang, Kun ; Xing, Zhanyong ; Wang, Hu ; Zhang, Mingshuo ; Chen, Yao ; Guo, Shiping ; Li, Mengmeng ; Sun, Haiding</creatorcontrib><description><![CDATA[In this work, we report an effective room-temperature passivation strategy for GaN-on-Si high-electron-mobility transistors (HEMTs) to improve device stability by introducing a spin-coated CYTOP organic passivation layer. This CYTOP coating can suppress the interface states of the devices to a low level of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{12}}</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">^{-\text{2}}\cdot</tex-math> </inline-formula>eV<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula> at a shallow energy trap of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>0.30 eV. As a result, improved device stability is realized, featuring reduced leakage current, smaller voltage hysteresis, reduced current collapse, and mitigated device degradation after long-term electrical stress. Besides, it is found that the CYTOP-passivated HEMT can operate with stable rectification behavior under an elevated temperature of 250 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C, confirming the high-temperature robustness of this organic passivation. These results highlight the potential of such room-temperature passivation strategy for further applications in electronic systems under complex conditions and harsh environments.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3280863</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Device stability ; Electronic systems ; Gallium nitrides ; GaN-on-Si ; HEMTs ; High electron mobility transistors ; High temperature ; high-electron-mobility transistors (HEMT) ; Hysteresis ; Leakage current ; Logic gates ; Low level ; MODFETs ; organic passivation ; Passivation ; Passivity ; Room temperature ; Semiconductor devices ; Spin coating ; Stability ; Stress ; Thermal stability</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43</citedby><cites>FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43</cites><orcidid>0000-0003-1117-8106 ; 0000-0001-7664-9074 ; 0000-0001-8664-666X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10149536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Haochen</creatorcontrib><creatorcontrib>Hu, Kunpeng</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Huang, Zhe</creatorcontrib><creatorcontrib>Guo, Yifu</creatorcontrib><creatorcontrib>Deng, Junyang</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Xing, Zhanyong</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Zhang, Mingshuo</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Guo, Shiping</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Sun, Haiding</creatorcontrib><title>Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this work, we report an effective room-temperature passivation strategy for GaN-on-Si high-electron-mobility transistors (HEMTs) to improve device stability by introducing a spin-coated CYTOP organic passivation layer. This CYTOP coating can suppress the interface states of the devices to a low level of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{12}}</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">^{-\text{2}}\cdot</tex-math> </inline-formula>eV<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula> at a shallow energy trap of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>0.30 eV. As a result, improved device stability is realized, featuring reduced leakage current, smaller voltage hysteresis, reduced current collapse, and mitigated device degradation after long-term electrical stress. Besides, it is found that the CYTOP-passivated HEMT can operate with stable rectification behavior under an elevated temperature of 250 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C, confirming the high-temperature robustness of this organic passivation. These results highlight the potential of such room-temperature passivation strategy for further applications in electronic systems under complex conditions and harsh environments.]]></description><subject>Device stability</subject><subject>Electronic systems</subject><subject>Gallium nitrides</subject><subject>GaN-on-Si</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>High temperature</subject><subject>high-electron-mobility transistors (HEMT)</subject><subject>Hysteresis</subject><subject>Leakage current</subject><subject>Logic gates</subject><subject>Low level</subject><subject>MODFETs</subject><subject>organic passivation</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Spin coating</subject><subject>Stability</subject><subject>Stress</subject><subject>Thermal stability</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9PwjAUxxujiYjePXho4rnY9nXdejSAQIJiZIZj041OS9iK7SDhv3cED55eXvL5vh8fhO4ZHTBG1VM-Hg045TAAntFMwgXqsSRJiZJCXqIepSwjCjK4RjcxbrpWCsF7aPXhfU1yW-9sMO0-WLwIX6ZxJX43MbqDaZ1vcOUDnpg34huydHg6fs0jXrn2G8_qXfAHu8Yje3ClxcvWFG7r2uMtuqrMNtq7v9pHny_jfDgl88VkNnyek5Ir3hLgTMoiqzhYoErxRKi0NDwTRihIICt4mhZCcZ6Y7suiFAwosEwqyyqwawF99Hie293xs7ex1Ru_D023UnMFIKmS6YmiZ6oMPsZgK70LrjbhqBnVJ32606dP-vSfvi7ycI44a-0_nAmVgIRfLYNo-A</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Haochen</creator><creator>Hu, Kunpeng</creator><creator>Sun, Yue</creator><creator>Yang, Lei</creator><creator>Huang, Zhe</creator><creator>Guo, Yifu</creator><creator>Deng, Junyang</creator><creator>Liang, Kun</creator><creator>Xing, Zhanyong</creator><creator>Wang, Hu</creator><creator>Zhang, Mingshuo</creator><creator>Chen, Yao</creator><creator>Guo, Shiping</creator><creator>Li, Mengmeng</creator><creator>Sun, Haiding</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid><orcidid>https://orcid.org/0000-0001-7664-9074</orcidid><orcidid>https://orcid.org/0000-0001-8664-666X</orcidid></search><sort><creationdate>20240301</creationdate><title>Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability</title><author>Zhang, Haochen ; Hu, Kunpeng ; Sun, Yue ; Yang, Lei ; Huang, Zhe ; Guo, Yifu ; Deng, Junyang ; Liang, Kun ; Xing, Zhanyong ; Wang, Hu ; Zhang, Mingshuo ; Chen, Yao ; Guo, Shiping ; Li, Mengmeng ; Sun, Haiding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Device stability</topic><topic>Electronic systems</topic><topic>Gallium nitrides</topic><topic>GaN-on-Si</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>High temperature</topic><topic>high-electron-mobility transistors (HEMT)</topic><topic>Hysteresis</topic><topic>Leakage current</topic><topic>Logic gates</topic><topic>Low level</topic><topic>MODFETs</topic><topic>organic passivation</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Spin coating</topic><topic>Stability</topic><topic>Stress</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haochen</creatorcontrib><creatorcontrib>Hu, Kunpeng</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Huang, Zhe</creatorcontrib><creatorcontrib>Guo, Yifu</creatorcontrib><creatorcontrib>Deng, Junyang</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Xing, Zhanyong</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Zhang, Mingshuo</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Guo, Shiping</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Sun, Haiding</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haochen</au><au>Hu, Kunpeng</au><au>Sun, Yue</au><au>Yang, Lei</au><au>Huang, Zhe</au><au>Guo, Yifu</au><au>Deng, Junyang</au><au>Liang, Kun</au><au>Xing, Zhanyong</au><au>Wang, Hu</au><au>Zhang, Mingshuo</au><au>Chen, Yao</au><au>Guo, Shiping</au><au>Li, Mengmeng</au><au>Sun, Haiding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this work, we report an effective room-temperature passivation strategy for GaN-on-Si high-electron-mobility transistors (HEMTs) to improve device stability by introducing a spin-coated CYTOP organic passivation layer. This CYTOP coating can suppress the interface states of the devices to a low level of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{12}}</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">^{-\text{2}}\cdot</tex-math> </inline-formula>eV<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula> at a shallow energy trap of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>0.30 eV. As a result, improved device stability is realized, featuring reduced leakage current, smaller voltage hysteresis, reduced current collapse, and mitigated device degradation after long-term electrical stress. Besides, it is found that the CYTOP-passivated HEMT can operate with stable rectification behavior under an elevated temperature of 250 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C, confirming the high-temperature robustness of this organic passivation. These results highlight the potential of such room-temperature passivation strategy for further applications in electronic systems under complex conditions and harsh environments.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3280863</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid><orcidid>https://orcid.org/0000-0001-7664-9074</orcidid><orcidid>https://orcid.org/0000-0001-8664-666X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-5 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2933609674 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Device stability Electronic systems Gallium nitrides GaN-on-Si HEMTs High electron mobility transistors High temperature high-electron-mobility transistors (HEMT) Hysteresis Leakage current Logic gates Low level MODFETs organic passivation Passivation Passivity Room temperature Semiconductor devices Spin coating Stability Stress Thermal stability |
title | Room-Temperature Organic Passivation for GaN-on-Si HEMTs With Improved Device Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Organic%20Passivation%20for%20GaN-on-Si%20HEMTs%20With%20Improved%20Device%20Stability&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Haochen&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3280863&rft_dat=%3Cproquest_ieee_%3E2933609674%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-32166b8f23e309925497ca284a493538b277b49225a110bc413031869e1f3ed43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933609674&rft_id=info:pmid/&rft_ieee_id=10149536&rfr_iscdi=true |