Loading…
A Data-Driven Analysis of Robust Automatic Piano Transcription
Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems...
Saved in:
Published in: | IEEE signal processing letters 2024, Vol.31, p.681-685 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-f6c16c8c3b2af5f9d5d1b18e297491999b5d55c88c7fc9e4826e45619112de753 |
container_end_page | 685 |
container_issue | |
container_start_page | 681 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Edwards, Drew Dixon, Simon Benetos, Emmanouil Maezawa, Akira Kusaka, Yuta |
description | Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems. In this letter, we study transcription systems from the perspective of their training data. By measuring their performance on out-of-distribution annotated piano data, we show how these models can severely overfit to acoustic properties of the training data. We create a new set of audio for the MAESTRO dataset, captured automatically in a professional studio recording environment via Yamaha Disklavier playback. Using various data augmentation techniques when training with the original and re-performed versions of the MAESTRO dataset, we achieve state-of-the-art note-onset accuracy of 88.4 F1-score on the MAPS dataset, without seeing any of its training data. We subsequently analyze these data augmentation techniques in a series of ablation studies to better understand their influence on the resulting models. |
doi_str_mv | 10.1109/LSP.2024.3363646 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933610874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10428040</ieee_id><sourcerecordid>2933610874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f6c16c8c3b2af5f9d5d1b18e297491999b5d55c88c7fc9e4826e45619112de753</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rXJRVjqJxQsWs8hm81CSrupya7Qf--W9uBp5vC8LzMPQrdAZgBEPyy-ljNKKJ8xJpnk8gxNQAhVUCbhfNxJSQqtibpEVzmvCSEKlJigxwo_2d4WTyn8-g5Xnd3sc8g4tvgz1kPucTX0cWv74PAy2C7iVbJddins-hC7a3TR2k32N6c5Rd8vz6v5W7H4eH2fV4vCUS76opUOpFOO1dS2otWNaKAG5akuuQatdS0aIZxSrmyd9lxR6bmQoAFo40vBpuj-2LtL8WfwuTfrOKTx2GyoHj8Goko-UuRIuRRzTr41uxS2Nu0NEHOwZEZL5mDJnCyNkbtjJHjv_-GcKsIJ-wOllWHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610874</pqid></control><display><type>article</type><title>A Data-Driven Analysis of Robust Automatic Piano Transcription</title><source>IEEE Xplore (Online service)</source><creator>Edwards, Drew ; Dixon, Simon ; Benetos, Emmanouil ; Maezawa, Akira ; Kusaka, Yuta</creator><creatorcontrib>Edwards, Drew ; Dixon, Simon ; Benetos, Emmanouil ; Maezawa, Akira ; Kusaka, Yuta</creatorcontrib><description>Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems. In this letter, we study transcription systems from the perspective of their training data. By measuring their performance on out-of-distribution annotated piano data, we show how these models can severely overfit to acoustic properties of the training data. We create a new set of audio for the MAESTRO dataset, captured automatically in a professional studio recording environment via Yamaha Disklavier playback. Using various data augmentation techniques when training with the original and re-performed versions of the MAESTRO dataset, we achieve state-of-the-art note-onset accuracy of 88.4 F1-score on the MAPS dataset, without seeing any of its training data. We subsequently analyze these data augmentation techniques in a series of ablation studies to better understand their influence on the resulting models.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3363646</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Acoustic properties ; Acoustics ; Algorithms ; Audio data ; Data analysis ; Data augmentation ; Data models ; Datasets ; Neural networks ; Piano transcription ; Pianos ; Pipelines ; Recording ; Training ; Training data</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.681-685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f6c16c8c3b2af5f9d5d1b18e297491999b5d55c88c7fc9e4826e45619112de753</cites><orcidid>0009-0004-6111-835X ; 0009-0004-4921-5253 ; 0000-0002-6098-481X ; 0000-0002-6820-6764 ; 0009-0002-9827-5434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10428040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Edwards, Drew</creatorcontrib><creatorcontrib>Dixon, Simon</creatorcontrib><creatorcontrib>Benetos, Emmanouil</creatorcontrib><creatorcontrib>Maezawa, Akira</creatorcontrib><creatorcontrib>Kusaka, Yuta</creatorcontrib><title>A Data-Driven Analysis of Robust Automatic Piano Transcription</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems. In this letter, we study transcription systems from the perspective of their training data. By measuring their performance on out-of-distribution annotated piano data, we show how these models can severely overfit to acoustic properties of the training data. We create a new set of audio for the MAESTRO dataset, captured automatically in a professional studio recording environment via Yamaha Disklavier playback. Using various data augmentation techniques when training with the original and re-performed versions of the MAESTRO dataset, we achieve state-of-the-art note-onset accuracy of 88.4 F1-score on the MAPS dataset, without seeing any of its training data. We subsequently analyze these data augmentation techniques in a series of ablation studies to better understand their influence on the resulting models.</description><subject>Ablation</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>Data analysis</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>Neural networks</subject><subject>Piano transcription</subject><subject>Pianos</subject><subject>Pipelines</subject><subject>Recording</subject><subject>Training</subject><subject>Training data</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rXJRVjqJxQsWs8hm81CSrupya7Qf--W9uBp5vC8LzMPQrdAZgBEPyy-ljNKKJ8xJpnk8gxNQAhVUCbhfNxJSQqtibpEVzmvCSEKlJigxwo_2d4WTyn8-g5Xnd3sc8g4tvgz1kPucTX0cWv74PAy2C7iVbJddins-hC7a3TR2k32N6c5Rd8vz6v5W7H4eH2fV4vCUS76opUOpFOO1dS2otWNaKAG5akuuQatdS0aIZxSrmyd9lxR6bmQoAFo40vBpuj-2LtL8WfwuTfrOKTx2GyoHj8Goko-UuRIuRRzTr41uxS2Nu0NEHOwZEZL5mDJnCyNkbtjJHjv_-GcKsIJ-wOllWHF</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Edwards, Drew</creator><creator>Dixon, Simon</creator><creator>Benetos, Emmanouil</creator><creator>Maezawa, Akira</creator><creator>Kusaka, Yuta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0004-6111-835X</orcidid><orcidid>https://orcid.org/0009-0004-4921-5253</orcidid><orcidid>https://orcid.org/0000-0002-6098-481X</orcidid><orcidid>https://orcid.org/0000-0002-6820-6764</orcidid><orcidid>https://orcid.org/0009-0002-9827-5434</orcidid></search><sort><creationdate>2024</creationdate><title>A Data-Driven Analysis of Robust Automatic Piano Transcription</title><author>Edwards, Drew ; Dixon, Simon ; Benetos, Emmanouil ; Maezawa, Akira ; Kusaka, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f6c16c8c3b2af5f9d5d1b18e297491999b5d55c88c7fc9e4826e45619112de753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>Data analysis</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>Neural networks</topic><topic>Piano transcription</topic><topic>Pianos</topic><topic>Pipelines</topic><topic>Recording</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Drew</creatorcontrib><creatorcontrib>Dixon, Simon</creatorcontrib><creatorcontrib>Benetos, Emmanouil</creatorcontrib><creatorcontrib>Maezawa, Akira</creatorcontrib><creatorcontrib>Kusaka, Yuta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Drew</au><au>Dixon, Simon</au><au>Benetos, Emmanouil</au><au>Maezawa, Akira</au><au>Kusaka, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Analysis of Robust Automatic Piano Transcription</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>681</spage><epage>685</epage><pages>681-685</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems. In this letter, we study transcription systems from the perspective of their training data. By measuring their performance on out-of-distribution annotated piano data, we show how these models can severely overfit to acoustic properties of the training data. We create a new set of audio for the MAESTRO dataset, captured automatically in a professional studio recording environment via Yamaha Disklavier playback. Using various data augmentation techniques when training with the original and re-performed versions of the MAESTRO dataset, we achieve state-of-the-art note-onset accuracy of 88.4 F1-score on the MAPS dataset, without seeing any of its training data. We subsequently analyze these data augmentation techniques in a series of ablation studies to better understand their influence on the resulting models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3363646</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0004-6111-835X</orcidid><orcidid>https://orcid.org/0009-0004-4921-5253</orcidid><orcidid>https://orcid.org/0000-0002-6098-481X</orcidid><orcidid>https://orcid.org/0000-0002-6820-6764</orcidid><orcidid>https://orcid.org/0009-0002-9827-5434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.681-685 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2933610874 |
source | IEEE Xplore (Online service) |
subjects | Ablation Acoustic properties Acoustics Algorithms Audio data Data analysis Data augmentation Data models Datasets Neural networks Piano transcription Pianos Pipelines Recording Training Training data |
title | A Data-Driven Analysis of Robust Automatic Piano Transcription |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Analysis%20of%20Robust%20Automatic%20Piano%20Transcription&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Edwards,%20Drew&rft.date=2024&rft.volume=31&rft.spage=681&rft.epage=685&rft.pages=681-685&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3363646&rft_dat=%3Cproquest_cross%3E2933610874%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-f6c16c8c3b2af5f9d5d1b18e297491999b5d55c88c7fc9e4826e45619112de753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933610874&rft_id=info:pmid/&rft_ieee_id=10428040&rfr_iscdi=true |