Loading…

Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which men...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2003-12, Vol.2003 (7), p.253269, Article 253269
Main Authors: Molina, Gary N. Garcia, Ebrahimi, Touradj, Vesin, Jean-Marc
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-82b980c6971ca5313f35c446b87c8f7705f69a994593cb7bc6e72479e90075d73
cites
container_end_page
container_issue 7
container_start_page 253269
container_title EURASIP journal on advances in signal processing
container_volume 2003
creator Molina, Gary N. Garcia
Ebrahimi, Touradj
Vesin, Jean-Marc
description Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.
doi_str_mv 10.1155/S1110865703302082
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933673136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933673136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-82b980c6971ca5313f35c446b87c8f7705f69a994593cb7bc6e72479e90075d73</originalsourceid><addsrcrecordid>eNplULtOwzAUtRBIlMIHsFliNvgRv8YStaWoEkPLwhI5xpZctXawk6F_T6p2QGK55w7npQPAI8HPhHD-siGEYCW4xIxhihW9AhMilESCKHz9578Fd6XsMOaCYjoBX-8pxB5uw8GhRXY_g4v2iDadsQ7We1NK8MGaPqQIk4fz-RKGCA18zSZEVKdDN_Quw1Ucrz9pZl23vwjuwY03--IeLjgFn4v5tn5D64_lqp6tkWUV75GirVbYCi2JNZwR5hm3VSVaJa3yUmLuhTZaV1wz28rWCidpJbXTGEv-LdkUPJ19u5zG_qVvdmnIcYxsqGZMyNFTjCxyZtmcSsnON10OB5OPDcHNacLm34TsFynDYbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933673136</pqid></control><display><type>article</type><title>Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Molina, Gary N. Garcia ; Ebrahimi, Touradj ; Vesin, Jean-Marc</creator><creatorcontrib>Molina, Gary N. Garcia ; Ebrahimi, Touradj ; Vesin, Jean-Marc</creatorcontrib><description>Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/S1110865703302082</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Classification ; Cognitive tasks ; Command and control ; Electroencephalography ; Human-computer interface ; Real time ; Time-frequency analysis ; Training</subject><ispartof>EURASIP journal on advances in signal processing, 2003-12, Vol.2003 (7), p.253269, Article 253269</ispartof><rights>Copyright © 2003 Hindawi Publishing Corporation 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-82b980c6971ca5313f35c446b87c8f7705f69a994593cb7bc6e72479e90075d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933673136/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933673136?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Molina, Gary N. Garcia</creatorcontrib><creatorcontrib>Ebrahimi, Touradj</creatorcontrib><creatorcontrib>Vesin, Jean-Marc</creatorcontrib><title>Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application</title><title>EURASIP journal on advances in signal processing</title><description>Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.</description><subject>Classification</subject><subject>Cognitive tasks</subject><subject>Command and control</subject><subject>Electroencephalography</subject><subject>Human-computer interface</subject><subject>Real time</subject><subject>Time-frequency analysis</subject><subject>Training</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplULtOwzAUtRBIlMIHsFliNvgRv8YStaWoEkPLwhI5xpZctXawk6F_T6p2QGK55w7npQPAI8HPhHD-siGEYCW4xIxhihW9AhMilESCKHz9578Fd6XsMOaCYjoBX-8pxB5uw8GhRXY_g4v2iDadsQ7We1NK8MGaPqQIk4fz-RKGCA18zSZEVKdDN_Quw1Ucrz9pZl23vwjuwY03--IeLjgFn4v5tn5D64_lqp6tkWUV75GirVbYCi2JNZwR5hm3VSVaJa3yUmLuhTZaV1wz28rWCidpJbXTGEv-LdkUPJ19u5zG_qVvdmnIcYxsqGZMyNFTjCxyZtmcSsnON10OB5OPDcHNacLm34TsFynDYbc</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Molina, Gary N. Garcia</creator><creator>Ebrahimi, Touradj</creator><creator>Vesin, Jean-Marc</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20031201</creationdate><title>Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application</title><author>Molina, Gary N. Garcia ; Ebrahimi, Touradj ; Vesin, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-82b980c6971ca5313f35c446b87c8f7705f69a994593cb7bc6e72479e90075d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Classification</topic><topic>Cognitive tasks</topic><topic>Command and control</topic><topic>Electroencephalography</topic><topic>Human-computer interface</topic><topic>Real time</topic><topic>Time-frequency analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina, Gary N. Garcia</creatorcontrib><creatorcontrib>Ebrahimi, Touradj</creatorcontrib><creatorcontrib>Vesin, Jean-Marc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina, Gary N. Garcia</au><au>Ebrahimi, Touradj</au><au>Vesin, Jean-Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>2003</volume><issue>7</issue><spage>253269</spage><pages>253269-</pages><artnum>253269</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1155/S1110865703302082</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2003-12, Vol.2003 (7), p.253269, Article 253269
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_proquest_journals_2933673136
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classification
Cognitive tasks
Command and control
Electroencephalography
Human-computer interface
Real time
Time-frequency analysis
Training
title Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Time-Frequency-Space%20Classification%20of%20EEG%20in%20a%20Brain-Computer%20Interface%20Application&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Molina,%20Gary%20N.%20Garcia&rft.date=2003-12-01&rft.volume=2003&rft.issue=7&rft.spage=253269&rft.pages=253269-&rft.artnum=253269&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/S1110865703302082&rft_dat=%3Cproquest_cross%3E2933673136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-82b980c6971ca5313f35c446b87c8f7705f69a994593cb7bc6e72479e90075d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933673136&rft_id=info:pmid/&rfr_iscdi=true