Loading…
Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model
A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filte...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2004-06, Vol.2004 (7), p.860718, Article 860718 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43 |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | 860718 |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2004 |
creator | Välimäki, Vesa Penttinen, Henri Knif, Jonte Laurson, Mikael Erkut, Cumhur |
description | A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge. |
doi_str_mv | 10.1155/S111086570440211X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933673296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933673296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</originalsourceid><addsrcrecordid>eNplkE1Lw0AYhBdRsFZ_gLcFz9F9d5NNcpRSrVBRiAVv4e1-2C1pNu4mh_z7RupB8DRzeBhmhpBbYPcAWfZQAQArZJazNGUc4POMzEAWeSKhYOd__CW5inHPWCY54zNSVX5oNa3Gtt-Z6CL1lk6OrjB00amdD5puomu_KNKFP3RDj73zLTbNSJfWOuVM29P33TjB2NBXr01zTS4sNtHc_OqcbJ6WH4tVsn57flk8rhMlCtYnIscyx9wiyBTKbaZBSwADDLcp8hS0wlwKEFYwNa3bcuSY8VIbpgygTsWc3J1yu-C_BxP7eu-HMHWLNS-FkLngpZwoOFEq-BiDsXUX3AHDWAOrf76r_30njns3YUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933673296</pqid></control><display><type>article</type><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest Publicly Available Content database</source><creator>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</creator><creatorcontrib>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</creatorcontrib><description>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/S111086570440211X</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Decay rate ; Digital filters ; Harpsichord music ; Resonators ; Strings ; Synthesis ; Waveguides</subject><ispartof>EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.860718, Article 860718</ispartof><rights>Välimäki et al. 2004.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933673296/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933673296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Välimäki, Vesa</creatorcontrib><creatorcontrib>Penttinen, Henri</creatorcontrib><creatorcontrib>Knif, Jonte</creatorcontrib><creatorcontrib>Laurson, Mikael</creatorcontrib><creatorcontrib>Erkut, Cumhur</creatorcontrib><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><title>EURASIP journal on advances in signal processing</title><description>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</description><subject>Algorithms</subject><subject>Decay rate</subject><subject>Digital filters</subject><subject>Harpsichord music</subject><subject>Resonators</subject><subject>Strings</subject><subject>Synthesis</subject><subject>Waveguides</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkE1Lw0AYhBdRsFZ_gLcFz9F9d5NNcpRSrVBRiAVv4e1-2C1pNu4mh_z7RupB8DRzeBhmhpBbYPcAWfZQAQArZJazNGUc4POMzEAWeSKhYOd__CW5inHPWCY54zNSVX5oNa3Gtt-Z6CL1lk6OrjB00amdD5puomu_KNKFP3RDj73zLTbNSJfWOuVM29P33TjB2NBXr01zTS4sNtHc_OqcbJ6WH4tVsn57flk8rhMlCtYnIscyx9wiyBTKbaZBSwADDLcp8hS0wlwKEFYwNa3bcuSY8VIbpgygTsWc3J1yu-C_BxP7eu-HMHWLNS-FkLngpZwoOFEq-BiDsXUX3AHDWAOrf76r_30njns3YUM</recordid><startdate>20040627</startdate><enddate>20040627</enddate><creator>Välimäki, Vesa</creator><creator>Penttinen, Henri</creator><creator>Knif, Jonte</creator><creator>Laurson, Mikael</creator><creator>Erkut, Cumhur</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20040627</creationdate><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><author>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Decay rate</topic><topic>Digital filters</topic><topic>Harpsichord music</topic><topic>Resonators</topic><topic>Strings</topic><topic>Synthesis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Välimäki, Vesa</creatorcontrib><creatorcontrib>Penttinen, Henri</creatorcontrib><creatorcontrib>Knif, Jonte</creatorcontrib><creatorcontrib>Laurson, Mikael</creatorcontrib><creatorcontrib>Erkut, Cumhur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Välimäki, Vesa</au><au>Penttinen, Henri</au><au>Knif, Jonte</au><au>Laurson, Mikael</au><au>Erkut, Cumhur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><date>2004-06-27</date><risdate>2004</risdate><volume>2004</volume><issue>7</issue><spage>860718</spage><pages>860718-</pages><artnum>860718</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1155/S111086570440211X</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.860718, Article 860718 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_proquest_journals_2933673296 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest Publicly Available Content database |
subjects | Algorithms Decay rate Digital filters Harpsichord music Resonators Strings Synthesis Waveguides |
title | Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Synthesis%20of%20the%20Harpsichord%20Using%20a%20Computationally%20Efficient%20Physical%20Model&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=V%C3%A4lim%C3%A4ki,%20Vesa&rft.date=2004-06-27&rft.volume=2004&rft.issue=7&rft.spage=860718&rft.pages=860718-&rft.artnum=860718&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/S111086570440211X&rft_dat=%3Cproquest_cross%3E2933673296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933673296&rft_id=info:pmid/&rfr_iscdi=true |