Loading…

Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filte...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2004-06, Vol.2004 (7), p.860718, Article 860718
Main Authors: Välimäki, Vesa, Penttinen, Henri, Knif, Jonte, Laurson, Mikael, Erkut, Cumhur
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43
cites
container_end_page
container_issue 7
container_start_page 860718
container_title EURASIP journal on advances in signal processing
container_volume 2004
creator Välimäki, Vesa
Penttinen, Henri
Knif, Jonte
Laurson, Mikael
Erkut, Cumhur
description A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.
doi_str_mv 10.1155/S111086570440211X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933673296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933673296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</originalsourceid><addsrcrecordid>eNplkE1Lw0AYhBdRsFZ_gLcFz9F9d5NNcpRSrVBRiAVv4e1-2C1pNu4mh_z7RupB8DRzeBhmhpBbYPcAWfZQAQArZJazNGUc4POMzEAWeSKhYOd__CW5inHPWCY54zNSVX5oNa3Gtt-Z6CL1lk6OrjB00amdD5puomu_KNKFP3RDj73zLTbNSJfWOuVM29P33TjB2NBXr01zTS4sNtHc_OqcbJ6WH4tVsn57flk8rhMlCtYnIscyx9wiyBTKbaZBSwADDLcp8hS0wlwKEFYwNa3bcuSY8VIbpgygTsWc3J1yu-C_BxP7eu-HMHWLNS-FkLngpZwoOFEq-BiDsXUX3AHDWAOrf76r_30njns3YUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933673296</pqid></control><display><type>article</type><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest Publicly Available Content database</source><creator>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</creator><creatorcontrib>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</creatorcontrib><description>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/S111086570440211X</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Decay rate ; Digital filters ; Harpsichord music ; Resonators ; Strings ; Synthesis ; Waveguides</subject><ispartof>EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.860718, Article 860718</ispartof><rights>Välimäki et al. 2004.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933673296/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933673296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Välimäki, Vesa</creatorcontrib><creatorcontrib>Penttinen, Henri</creatorcontrib><creatorcontrib>Knif, Jonte</creatorcontrib><creatorcontrib>Laurson, Mikael</creatorcontrib><creatorcontrib>Erkut, Cumhur</creatorcontrib><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><title>EURASIP journal on advances in signal processing</title><description>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</description><subject>Algorithms</subject><subject>Decay rate</subject><subject>Digital filters</subject><subject>Harpsichord music</subject><subject>Resonators</subject><subject>Strings</subject><subject>Synthesis</subject><subject>Waveguides</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkE1Lw0AYhBdRsFZ_gLcFz9F9d5NNcpRSrVBRiAVv4e1-2C1pNu4mh_z7RupB8DRzeBhmhpBbYPcAWfZQAQArZJazNGUc4POMzEAWeSKhYOd__CW5inHPWCY54zNSVX5oNa3Gtt-Z6CL1lk6OrjB00amdD5puomu_KNKFP3RDj73zLTbNSJfWOuVM29P33TjB2NBXr01zTS4sNtHc_OqcbJ6WH4tVsn57flk8rhMlCtYnIscyx9wiyBTKbaZBSwADDLcp8hS0wlwKEFYwNa3bcuSY8VIbpgygTsWc3J1yu-C_BxP7eu-HMHWLNS-FkLngpZwoOFEq-BiDsXUX3AHDWAOrf76r_30njns3YUM</recordid><startdate>20040627</startdate><enddate>20040627</enddate><creator>Välimäki, Vesa</creator><creator>Penttinen, Henri</creator><creator>Knif, Jonte</creator><creator>Laurson, Mikael</creator><creator>Erkut, Cumhur</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20040627</creationdate><title>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</title><author>Välimäki, Vesa ; Penttinen, Henri ; Knif, Jonte ; Laurson, Mikael ; Erkut, Cumhur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Decay rate</topic><topic>Digital filters</topic><topic>Harpsichord music</topic><topic>Resonators</topic><topic>Strings</topic><topic>Synthesis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Välimäki, Vesa</creatorcontrib><creatorcontrib>Penttinen, Henri</creatorcontrib><creatorcontrib>Knif, Jonte</creatorcontrib><creatorcontrib>Laurson, Mikael</creatorcontrib><creatorcontrib>Erkut, Cumhur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Välimäki, Vesa</au><au>Penttinen, Henri</au><au>Knif, Jonte</au><au>Laurson, Mikael</au><au>Erkut, Cumhur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><date>2004-06-27</date><risdate>2004</risdate><volume>2004</volume><issue>7</issue><spage>860718</spage><pages>860718-</pages><artnum>860718</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1155/S111086570440211X</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.860718, Article 860718
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_proquest_journals_2933673296
source Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest Publicly Available Content database
subjects Algorithms
Decay rate
Digital filters
Harpsichord music
Resonators
Strings
Synthesis
Waveguides
title Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Synthesis%20of%20the%20Harpsichord%20Using%20a%20Computationally%20Efficient%20Physical%20Model&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=V%C3%A4lim%C3%A4ki,%20Vesa&rft.date=2004-06-27&rft.volume=2004&rft.issue=7&rft.spage=860718&rft.pages=860718-&rft.artnum=860718&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/S111086570440211X&rft_dat=%3Cproquest_cross%3E2933673296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-37a97a7fa16419b5d1d611e10ab4a241dca76313f30c111b2a2a529de0ce1ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933673296&rft_id=info:pmid/&rfr_iscdi=true